211 research outputs found

    A basic helix-loop-helix transcription factor, PhFBH4, regulates flower senescence by modulating ethylene biosynthesis pathway in petunia.

    Get PDF
    The basic helix-loop-helix (bHLH) transcription factors (TFs) play important roles in regulating multiple biological processes in plants. However, there are few reports about the function of bHLHs in flower senescence. In this study, a bHLH TF, PhFBH4, was found to be dramatically upregulated during flower senescence. Transcription of PhFBH4 is induced by plant hormones and abiotic stress treatments. Silencing of PhFBH4 using virus-induced gene silencing or an antisense approach extended flower longevity, while transgenic petunia flowers with an overexpression construct showed a reduction in flower lifespan. Abundance of transcripts of senescence-related genes (SAG12, SAG29) was significantly changed in petunia PhFBH4 transgenic flowers. Furthermore, silencing or overexpression of PhFBH4 reduced or increased, respectively, transcript abundances of important ethylene biosynthesis-related genes, ACS1 and ACO1, thereby influencing ethylene production. An electrophoretic mobility shift assay showed that the PhFBH4 protein physically interacted with the G-box cis-element in the promoter of ACS1, suggesting that ACS1 was a direct target of the PhFBH4 protein. In addition, ectopic expression of this gene altered plant development including plant height, internode length, and size of leaves and flowers, accompanied by alteration of transcript abundance of the gibberellin biosynthesis-related gene GA2OX3. Our results indicate that PhFBH4 plays an important role in regulating plant growth and development through modulating the ethylene biosynthesis pathway

    A Petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in flower senescence.

    Get PDF
    Flower senescence is initiated by developmental and environmental signals, and regulated by gene transcription. A homeodomain-leucine zipper transcription factor, PhHD-Zip, is up-regulated during petunia flower senescence. Virus-induced gene silencing of PhHD-Zip extended flower life by 20% both in unpollinated and pollinated flowers. Silencing PhHD-Zip also dramatically reduced ethylene production and the abundance of transcripts of genes involved in ethylene (ACS, ACO), and ABA (NCED) biosynthesis. Abundance of transcripts of senescence-related genes (SAG12, SAG29) was also dramatically reduced in the silenced flowers. Over-expression of PhHD-Zip accelerated petunia flower senescence. Furthermore, PhHD-Zip transcript abundance in petunia flowers was increased by application of hormones (ethylene, ABA) and abiotic stresses (dehydration, NaCl and cold). Our results suggest that PhHD-Zip plays an important role in regulating petunia flower senescence

    Osteogenesis of Adipose-Derived Stem Cells

    Get PDF

    Leveraging junk information to enhance the quantum error mitigation

    Full text link
    Noise in quantum information processing poses a significant obstacle to achieving precise results. Quantum error mitigation techniques are crucial for improving the accuracy of experimental expectation values in this process. In the experiments, it is commonly observed that some measured events violate certain principles, such as symmetry constraints. These events can be considered junk information and should be discarded in a post-selection process. In this work, we introduce a quantum error mitigation method named Self-Trained Quantum Noise Filter (SQNF), which leverages the junk information to differentiate errors from the experimental population distributions, thereby aiming to approximate the error-free distribution. Our numerical results demonstrate that the proposed method can significantly reduce the infidelity of population distributions compared to the traditional post-selection method. Notably, the infidelity reduction is achieved without additional experimental resource consumption. Our method is scalable and applicable to multi-qubit computing systems

    Role of OCT4 in cisplatin treatment of testicular embryonal carcinoma

    Get PDF
    Purpose: To determine the role of embryonal transcription factor OCT4 in cisplatin treatment of testicular embryonal carcinoma.Methods: In vitro assays were employed to assess the effect of cisplatin treatment on testicular embryonal carcinoma cell lines under OCT4 silencing. Following treatment with 500 ng/μL cisplatin, MTT assay was used to examine cell proliferation of 2012-EP and 833K-E cells with or without OCT silencing, while wound healing assay was used to examine cell migration ability. Transwell assay and crystal violet staining were employed to measure cell invasive capacity, whereas the distribution pattern of cell cycle was assessed by flow cytometry. The expression levels of several critical components in tumorigenicity related pathways with or without OCT silencing were determined by Western-blot analysis.Results: Cisplatin enhanced OCT4-silenced cell viability at all concentration (p < 0.01) when compared to control cells. Upon treatment with 500 ng/μL cisplatin, OCT4-silenced cells showed 2- to 3-fold enhancement in cell proliferation (p < 0.001), 2-fold increase in cell migration capacity (p < 0.001), and about 1.5-fold enhancement in invasive capacity (p < 0.001) when compared to control cells. In addition, OCT4 silencing upregulated the expression level of the proteins involved in cell proliferation, cell mobility, cancer metastasis and cell cycle control.Conclusion: The results suggest that OCT4 may serve as a therapeutic target for testicular embryonal carcinoma treatment in combination with cisplatin by modulating OCT4 expression level. This physiological evidence indicates that OCT4 downregulation contributes to cisplatin resistance in chemotherapy and subsequent disease relapse.Keywords: OCT4, Cisplatin resistance, Testicular embryonal carcinoma, Chemotherap

    Mulberry leaf lipid nanoparticles: a naturally targeted CRISPR/Cas9 oral delivery platform for alleviation of colon diseases

    Get PDF
    Oral treatment of colon diseases with the CRISPR/Cas9 system has been hampered by the lack of a safe and efficient delivery platform. Overexpressed CD98 plays a crucial role in the progression of ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC). In this study, lipid nanoparticles (LNPs) derived from mulberry leaves are functionalized with Pluronic copolymers and optimized to deliver the CRISPR/Cas gene editing machinery for CD98 knockdown. The obtained LNPs possessed a hydrodynamic diameter of 267.2 nm, a narrow size distribution, and a negative surface charge (â 25.6 mV). Incorporating Pluronic F127 into LNPs improved their stability in the gastrointestinal tract and facilitated their penetration through the colonic mucus barrier. The galactose end groups promoted endocytosis of the LNPs by macrophages via asialoglycoprotein receptor-mediated endocytosis, with a transfection efficiency of 2.2-fold higher than Lipofectamine 6000. The LNPs significantly decreased CD98 expression, down-regulated pro-inflammatory cytokines (TNF-α and IL-6), up-regulated anti-inflammatory factors (IL-10), and polarized macrophages to M2 phenotype. Oral administration of LNPs mitigated UC and CAC by alleviating inflammation, restoring the colonic barrier, and modulating intestinal microbiota. As the first oral CRISPR/Cas9 delivery LNP, this system offers a precise and efficient platform for the oral treatment of colon diseases.This study was supported by the National Natural Science Foundation of China (82072060, 82360110, and 22008201), the Science and Technology Department of Jiangxi Province (20212BDH81019 and 20224BAB206073), the Fundamental Research Funds for the Central Universities (SWU-XDPY22006 and SWU-KQ22075), the Venture & Innovation Support Pro-gram for Chongqing Overseas Returnees (2205012980212766), and theScience Fund for Distinguished Young Scholars of Chongqing Municipality (2022NSCQ-JQX5279)

    The distinct role of orbitofrontal and medial prefrontal cortex in encoding impulsive choices in an animal model of attention deficit hyperactivity disorder

    Get PDF
    Attention deficit hyperactivity disorder (ADHD) is a complex neurodevelopmental disorder affecting up to 5% of children worldwide. The lack of understanding of ADHD etiology prevented the development of effective treatment for the disease. Here, using in vivo electrophysiology recordings, we have recorded and analyzed the neuronal encoding of delay discounting behavior in prefrontal and orbitofrontal cortex of spontaneously hypertensive rat (SHR). We found that in the presence of rewards, neurons in the orbitofrontal cortex (OFC) were activated regardless to the value of the rewards and OFC neurons in SHR exhibited significantly higher rates of neuronal discharging towards the presence of rewards. While in the medial prefrontal cortex (mPFC), neurons of SHR responded similarly in the presence of large rewards compared with control rats whereas they displayed higher firing rates towards smaller rewards. In addition, the reward-predicting neurons in the OFC encodes for value of rewards in control animals and they were strongly activated upon receiving a small immediate reinforcer in the SHR whereas the reward-predicting neurons in the mPFC neurons generally did not respond to the value of the rewards. Our study characterized the neuronal discharging patterns of OFC and mPFC neurons in the SHR and the control animals and provided novel insights for further understanding the neuronal basis of ADHD pathology
    • …
    corecore