224 research outputs found

    Research on the Distribution of Freight with Time Windows in Consideration of Traffic Congestion

    Get PDF
    Since the implementation of the regulations on the limit-driving of truck in urban areas of big cities, the study on route and time of city distribution gradually gets more attention. To improve the efficiency of distribution transport, not only the length of the routes need to be considered, but also the traffic conditions as well, even along with freight station locations and etc. Based on the traffic data of Beijing as an example, this paper analyze the differences in traffic distribution in aspect of time and areas, which will be taken into considered the distribution selection strategy with time window, so that we can ensure the freight trucks in delivery and pick-up processing avoids peak congestion. Finally take company A as an example, introduce the dynamic replenishment method to different districts considering their own particular congestion status. We expect to bring some inspiration to the vehicle allocation decision of online freight companies

    Phytoextraction potential of wetland plants for Copper in Water Bodies

    Get PDF
    Luo, Z., Yuan, X, Chen, X., & Cui, X. (March-April, 2017). Phytoextraction potential of wetland plants for Copper in Water Bodies. Water Technology and Sciences (in Spanish), 8(2), 43-50. Copper is the most common heavy metal contaminant in the environment. Wetland construction engineering and technology have been used to control water pollution due to their low cost and efficiency and the hydrophytes have been the most important constituents of wetland construction. In this experiment, during April of 2014, Cu2+ accumulation content in different parts of Acorus calamus and Phragmites australis were investigated based on hydroponic experiments of different Cu2+ concentration solutions. Cu2+ concentrations in the water body were 0, 10, 25, 60, 100, 200 and 500 mg/l, respectively. The results showed that there were significant Cu2+ concentration differences between the above- and below-ground parts of Acorus calamus and Phragmites australis. Cu2+ content in the above- and belowground parts of wetland plants increased with hydroponic solution Cu2+ concentrations, resulting in a significantly positive correlation between Cu2+ content and concentrations of hydroponic solutions. There was a significant difference in Cu2+ content in the wetland plants under all hydroponic solution Cu2+ concentrations. Acorus calamus exhibited the greatest Cu2+ accumulation in above- and below-ground parts. Acorus calamus and Phragmites australis can be selected for application on the phytoremediation of water polluted by heavy metals due to their excellent Cu2+ accumulation ability

    A real-time correlation of host-level events in cyber range service for smart campus

    Get PDF

    Bi-allelic CAMSAP1 variants cause a clinically recognizable neuronal migration disorder

    Get PDF
    Non-centrosomal microtubules are essential cytoskeletal filaments that are important for neurite formation, axonal transport, and neuronal migration. They require stabilization by microtubule minus-end-targeting proteins including the CAMSAP family of molecules. Using exome sequencing on samples from five unrelated families, we show that bi-allelic CAMSAP1 loss-of-function variants cause a clinically recognizable, syndromic neuronal migration disorder. The cardinal clinical features of the syndrome include a characteristic craniofacial appearance, primary microcephaly, severe neurodevelopmental delay, cortical visual impairment, and seizures. The neuroradiological phenotype comprises a highly recognizable combination of classic lissencephaly with a posterior more severe than anterior gradient similar to PAFAH1B1(LIS1)-related lissencephaly and severe hypoplasia or absence of the corpus callosum; dysplasia of the basal ganglia, hippocampus, and midbrain; and cerebellar hypodysplasia, similar to the tubulinopathies, a group of monogenic tubulin-associated disorders of cortical dysgenesis. Neural cell rosette lineages derived from affected individuals displayed findings consistent with these phenotypes, including abnormal morphology, decreased cell proliferation, and neuronal differentiation. Camsap1-null mice displayed increased perinatal mortality, and RNAScope studies identified high expression levels in the brain throughout neurogenesis and in facial structures, consistent with the mouse and human neurodevelopmental and craniofacial phenotypes. Together our findings confirm a fundamental role of CAMSAP1 in neuronal migration and brain development and define bi-allelic variants as a cause of a clinically distinct neurodevelopmental disorder in humans and mice

    Blood Eosinophils and Clinical Outcomes in Patients With Acute Exacerbation of Chronic Obstructive Pulmonary Disease: A Propensity Score Matching Analysis of Real-World Data in China

    Get PDF
    Background and Objective: Elevated eosinophils in chronic obstructive pulmonary disease (COPD) are recognized as a biomarker to guide inhaled corticosteroids use, but the value of blood eosinophils in hospitalized exacerbations of COPD remains controversial. This study aimed to evaluate the accuracy of eosinophils in predicting clinical outcomes in acute exacerbation of COPD (AECOPD).Methods: We analyzed data from the acute exacerbation of chronic obstructive pulmonary disease inpatient registry (ACURE) study, which is an ongoing nationwide multicenter, observational real-world study in patients admitted for AECOPD. Data collected between January 2018 and December 2019 in 163 centers were first reviewed. The eligible patients were divided into eosinophilic and non-eosinophilic groups, according to blood eosinophil with 2% of the total leukocyte count as the threshold. Propensity score (PS) matching was performed to adjust for confounders.Results: A total of 1,566 patients (median age: 69 years; 80.3% male) were included and 42.7% had an eosinophilic AECOPD. Eosinophil count <2% was associated with the development of respiratory failure and pneumonia. After PS matching, 650 pairs in overall patients, 468 pairs in patients with smoking history and 177 pairs in patients without smoking were selected, respectively. Only in patients with smoking history, the non-eosinophilic AECOPD was associated with longer median hospital stays (9 vs. 8 days, P = 0.034), higher dosage of corticosteroid use, higher economic burden of hospitalization, and poorer response to corticosteroid therapy compared to the eosinophilic AECOPD. No significant difference was found in patients without smoking. Eosinophil levels had no relationship with the change of COPD Assessment Test scores and readmissions or death after 30 days.Conclusion: Elevated eosinophils were associated with better short-term outcomes only in patients with a smoking history. Eosinophil levels cannot be confidently used as a predictor alone for estimating prognosis

    Act1, a Negative Regulator in CD40- and BAFF-Mediated B Cell Survival

    Get PDF
    AbstractTNF receptor (TNFR) superfamily members, CD40, and BAFFR play critical roles in B cell survival and differentiation. Genetic deficiency in a novel adaptor molecule, Act1, for CD40 and BAFF results in a dramatic increase in peripheral B cells, which culminates in lymphadenopathy and splenomegaly, hypergammaglobulinemia, and autoantibodies. While the B cell-specific Act1 knockout mice displayed a similar phenotype with less severity, the pathology of the Act1-deficient mice was mostly blocked in CD40-Act1 and BAFF-Act1 double knockout mice. CD40- and BAFF-mediated survival is significantly increased in Act1-deficent B cells, with stronger IκB phosphorylation, processing of NF-κB2 (p100/p52), and activation of JNK, ERK, and p38 pathways, indicating that Act1 negatively regulates CD40- and BAFF-mediated signaling events. These findings demonstrate that Act1 plays an important role in the homeostasis of B cells by attenuating CD40 and BAFFR signaling

    Anti-angiogenesis therapy in the Vx2 rabbit cancer model with a lipase-cleavable Sn 2 taxane phospholipid prodrug using αvβ3-targeted theranostic nanoparticles

    Get PDF
    In nanomedicine, the hydrophobic nature of paclitaxel has favored its incorporation into many nanoparticle formulations for anti-cancer chemotherapy. At lower doses taxanes are reported to elicit anti-angiogenic responses. In the present study, the facile synthesis, development and characterization of a new lipase-labile docetaxel prodrug is reported and shown to be an effective anti-angiogenic agent in vitro and in vivo. The Sn 2 phosphatidylcholine prodrug was stably incorporated into the lipid membrane of α(v)β(3)-integrin targeted perfluorocarbon (PFC) nanoparticles (α(v)β(3)-Dxtl-PD NP) and did not appreciably release during dissolution against PBS buffer or plasma over three days. Overnight exposure of α(v)β(3)-Dxtl-PD NP to plasma spiked with phospholipase enzyme failed to liberate the taxane from the membrane until the nanoparticle integrity was compromised with alcohol. The bioactivity and efficacy of α(v)β(3)-Dxtl-PD NP in endothelial cell culture was as effective as Taxol(®) or free docetaxel in methanol at equimolar doses over 96 hours. The anti-angiogenesis effectiveness of α(v)β(3)-Dxtl-PD NP was demonstrated in the Vx2 rabbit model using MR imaging of angiogenesis with the same α(v)β(3)-PFC nanoparticle platform. Nontargeted Dxtl-PD NP had a similar MR anti-angiogenesis response as the integrin-targeted agent, but microscopically measured decreases in tumor cell proliferation and increased apoptosis were detected only for the targeted drug. Equivalent dosages of Abraxane(®) given over the same treatment schedule had no effect on angiogenesis when compared to control rabbits receiving saline only. These data demonstrate that α(v)β(3)-Dxtl-PD NP can reduce MR detectable angiogenesis and slow tumor progression in the Vx2 model, whereas equivalent systemic treatment with free taxane had no benefit

    GmDAD1, a Conserved Defender Against Cell Death 1 (DAD1) From Soybean, Positively Regulates Plant Resistance Against Phytophthora Pathogens

    Get PDF
    Initially identified as a mammalian apoptosis suppressor, defender against apoptotic death 1 (DAD1) protein has conserved plant orthologs acting as negative regulators of cell death. The potential roles and action mechanisms of plant DADs in resistance against Phytophthora pathogens are still unknown. Here, we cloned GmDAD1 from soybean and performed functional dissection. GmDAD1 expression can be induced by Phytophthora sojae infection in both compatible and incompatible soybean varieties. By manipulating GmDAD1 expression in soybean hairy roots, we showed that GmDAD1 transcript accumulations are positively correlated with plant resistance levels against P. sojae. Heterologous expression of GmDAD1 in Nicotiana benthamiana enhanced its resistance to Phytophthora parasitica. NbDAD1 from N. benthamiana was shown to have similar role in conferring Phytophthora resistance. As an endoplasmic reticulum (ER)-localized protein, GmDAD1 was demonstrated to be involved in ER stress signaling and to affect the expression of multiple defense-related genes. Taken together, our findings reveal that GmDAD1 plays a critical role in defense against Phytophthora pathogens and might participate in the ER stress signaling pathway. The defense-associated characteristic of GmDAD1 makes it a valuable working target for breeding Phytophthora resistant soybean varieties
    • …
    corecore