614 research outputs found

    Direction-aware Spatial Context Features for Shadow Detection

    Full text link
    Shadow detection is a fundamental and challenging task, since it requires an understanding of global image semantics and there are various backgrounds around shadows. This paper presents a novel network for shadow detection by analyzing image context in a direction-aware manner. To achieve this, we first formulate the direction-aware attention mechanism in a spatial recurrent neural network (RNN) by introducing attention weights when aggregating spatial context features in the RNN. By learning these weights through training, we can recover direction-aware spatial context (DSC) for detecting shadows. This design is developed into the DSC module and embedded in a CNN to learn DSC features at different levels. Moreover, a weighted cross entropy loss is designed to make the training more effective. We employ two common shadow detection benchmark datasets and perform various experiments to evaluate our network. Experimental results show that our network outperforms state-of-the-art methods and achieves 97% accuracy and 38% reduction on balance error rate.Comment: Accepted for oral presentation in CVPR 2018. The journal version of this paper is arXiv:1805.0463

    SINet: A Scale-insensitive Convolutional Neural Network for Fast Vehicle Detection

    Full text link
    Vision-based vehicle detection approaches achieve incredible success in recent years with the development of deep convolutional neural network (CNN). However, existing CNN based algorithms suffer from the problem that the convolutional features are scale-sensitive in object detection task but it is common that traffic images and videos contain vehicles with a large variance of scales. In this paper, we delve into the source of scale sensitivity, and reveal two key issues: 1) existing RoI pooling destroys the structure of small scale objects, 2) the large intra-class distance for a large variance of scales exceeds the representation capability of a single network. Based on these findings, we present a scale-insensitive convolutional neural network (SINet) for fast detecting vehicles with a large variance of scales. First, we present a context-aware RoI pooling to maintain the contextual information and original structure of small scale objects. Second, we present a multi-branch decision network to minimize the intra-class distance of features. These lightweight techniques bring zero extra time complexity but prominent detection accuracy improvement. The proposed techniques can be equipped with any deep network architectures and keep them trained end-to-end. Our SINet achieves state-of-the-art performance in terms of accuracy and speed (up to 37 FPS) on the KITTI benchmark and a new highway dataset, which contains a large variance of scales and extremely small objects.Comment: Accepted by IEEE Transactions on Intelligent Transportation Systems (T-ITS

    Impact of Temperament Types and Anger Intensity on Drivers\u27 EEG Power Spectrum and Sample Entropy: An On-road Evaluation Toward Road Rage Warning

    Get PDF
    "Road rage", also called driving anger, is becoming an increasingly common phenomenon affecting road safety in auto era as most of previous driving anger detection approaches based on physiological indicators are often unreliable due to the less consideration of drivers\u27 individual differences. This study aims to explore the impact of temperament types and anger intensity on drivers\u27 EEG characteristics. Thirty-two drivers with valid license were enrolled to perform on-road experiments on a particularly busy route on which a variety of provoking events like cutting in line of surrounding vehicle, jaywalking, occupying road of non-motor vehicle and traffic congestion frequently happened. Then, muti-factor analysis of variance (ANOVA) and post hoc analysis were utilized to study the impact of temperament types and anger intensity on drivers\u27 power spectrum and sample entropy of θ and β waves extracted from EEG signals. The study results firstly indicated that right frontal region of the brain has close relationship with driving anger. Secondly, there existed significant main effects of temperament types on power spectrum and sample entropy of β wave while significant main effects of anger intensity on power spectrum and sample entropy of θ and β wave were all observed. Thirdly, significant interactions between temperament types and anger intensity for power spectrum and sample entropy of β wave were both noted. Fourthly, with the increase of anger intensity, the power spectrum and sample entropy both decreased sufficiently for θ wave while increased remarkably for β wave. The study results can provide a theoretical support for designing a personalized and hierarchical warning system for road rage

    All that Glitters is not Gold: Understanding the Impacts of Platform Recommendation Algorithm Changes on Complementors in the Sharing Economy

    Get PDF
    Sharing platforms often leverage recommendation algorithms to reduce matching costs and improve buyer satisfaction. However, the economic impacts of different recommendation algorithms on the business operations of complementors remains unclear. This study uses natural quasi-experiments and proprietary data from a home-cooked food-sharing platform with two recommendation algorithms: word-of-mouth recommendation (WMR) and botler personalization recommendation (BPR). Results show the WMR negatively affects revenue while BPR has a positive effect. The contrast revenue effects have been attributed to capacity constraints for complementors and matching frictions for consumers. WMR encourages sellers to specialize in high-quality products but limits new product development. BPR promotes innovation to suit diverse customer tastes but may reduce quality. This reflects the exploration-exploitation trade-off: WMR exploits existing competences, while BPR explores new products to satisfy personal preferences. The authors discuss implications for how to utilize recommendation algorithms and artificial intelligence for the prosperity of sharing economy platforms

    SPFL: A Self-purified Federated Learning Method Against Poisoning Attacks

    Full text link
    While Federated learning (FL) is attractive for pulling privacy-preserving distributed training data, the credibility of participating clients and non-inspectable data pose new security threats, of which poisoning attacks are particularly rampant and hard to defend without compromising privacy, performance or other desirable properties of FL. To tackle this problem, we propose a self-purified FL (SPFL) method that enables benign clients to exploit trusted historical features of locally purified model to supervise the training of aggregated model in each iteration. The purification is performed by an attention-guided self-knowledge distillation where the teacher and student models are optimized locally for task loss, distillation loss and attention-based loss simultaneously. SPFL imposes no restriction on the communication protocol and aggregator at the server. It can work in tandem with any existing secure aggregation algorithms and protocols for augmented security and privacy guarantee. We experimentally demonstrate that SPFL outperforms state-of-the-art FL defenses against various poisoning attacks. The attack success rate of SPFL trained model is at most 3%\% above that of a clean model, even if the poisoning attack is launched in every iteration with all but one malicious clients in the system. Meantime, it improves the model quality on normal inputs compared to FedAvg, either under attack or in the absence of an attack

    Finger Vein Image Deblurring Using Neighbors-Based Binary-GAN (NB-GAN)

    Get PDF
    Vein contraction and venous compression typically caused by low temperature and excessive placement pressure can blur the captured finger vein images and severely impair the quality of extracted features. To improve the quality of captured finger vein image, this paper proposes a 26-layer generator network constrained by Neighbors-based Binary Patterns (NBP) texture loss to recover the clear image (guessing the original clear image). Firstly, by analyzing various types and degrees of blurred finger vein images captured in real application scenarios, a method to mathematically model the local and global blurriness using a pair of defocused and mean blur kernels is proposed. By iteratively and alternatively convoluting clear images with both kernels in a multi-scale window, a polymorphic blur training set is constructed for network training. Then, NBP texture loss is used for training the generator to enhance the deblurring ability of the network on images. Lastly, a novel network structure is proposed to retain more vein texture feature information, and two residual connections are added on both sides of the residual module of the 26-layer generator network to prevent degradation and overfitting. Theoretical analysis and simulation results show that the proposed neighbors-based binary-GAN (NB-GAN) can achieve better deblurring performance than the the-state-of-the-art approaches
    corecore