102 research outputs found

    Parameter-Efficient Conformers via Sharing Sparsely-Gated Experts for End-to-End Speech Recognition

    Full text link
    While transformers and their variant conformers show promising performance in speech recognition, the parameterized property leads to much memory cost during training and inference. Some works use cross-layer weight-sharing to reduce the parameters of the model. However, the inevitable loss of capacity harms the model performance. To address this issue, this paper proposes a parameter-efficient conformer via sharing sparsely-gated experts. Specifically, we use sparsely-gated mixture-of-experts (MoE) to extend the capacity of a conformer block without increasing computation. Then, the parameters of the grouped conformer blocks are shared so that the number of parameters is reduced. Next, to ensure the shared blocks with the flexibility of adapting representations at different levels, we design the MoE routers and normalization individually. Moreover, we use knowledge distillation to further improve the performance. Experimental results show that the proposed model achieves competitive performance with 1/3 of the parameters of the encoder, compared with the full-parameter model.Comment: accepted in INTERSPEECH 202

    Qi-fu-yin attenuated cognitive disorders in 5xFAD mice of Alzheimer's disease animal model by regulating immunity

    Get PDF
    IntroductionCognitive impairment is the main symptom of Alzheimer's disease (AD). Accumulating evidence implicate that immunity plays an important role in AD. Here, we investigated the effect of Qi-fu-yin (QFY) on cognitive impairment and cytokine secretion of 5xFAD mice.MethodsWe used 2.5-month-old 5xFAD transgenic mice for behavioral tests to observe the changes in cognitive function after QFY treatment. After the behavioral experiment, the whole brain, cortex and plasma of each mouse were collected for soluble Aβ analysis, immunohistochemical experiment and cytokine analysis.ResultsHere we found that the treatment of QFY ameliorated the ability of object recognition, passive avoidance responses and the ability of spatial learning and memory in 5xFAD mice. The deposits of β1 − 42 and Aβ1 − 40 were alleviated and the ration of Aβ1 − 42/Aβ1 − 40 was decrease in the plasma and brain of 5xFAD mice administrated with QFY. The administration of QFY promoted the secretion of anti-inflammatory cytokines, IL-5, IL-10 and G-CSF, and reduced the content of proinflammatory cytokines IFN-γ in plasma of 5xFAD mice. Notably, we found that the treatment of QFY decreased the concentration of CCL11 in the brain and plasma of 5xFAD mice.ConclusionThis suggested that QFY improved cognition and reduced Aβ deposits in 5xFAD mice by regulating abnormal immunity in 5xFAD mice. QFY may be as a potential therapeutic agent for AD

    Characterization of Adenocarcinoma\u27s Autofluorescence Properties Using Multiexcitation Analysis Method

    Full text link
    General purpose of this research is to get an early cancer detection method based on the properties of optical analysis between normal and adenocarsinoma tissue using the multiexcitation autofluorescence method. Observation of autofluorescence properties was done on the biopsy sample of adenocarcinoma tissues, GR mice transplanted by adenocarsinoma, and cell culture SM 1. Excitation on tissue was done by using  the lamp Light Emitting Diode (LED) at some visible light wavelength range. This research obtained that the value of Intensity Auto fluorescence (IAF) at range red wavelength of cells and adenocarsinoma tissues tend to lower compared to the cells normal tissues if its were excited by blue LED. On the contrary, the value of IAF at infra red wavelength from cells and carcinoma tissues tend to higher compared to the cells and normal tissues if its were excited by red LED

    Relationship between biofilm formation and antibiotic resistance of Klebsiella pneumoniae and updates on antibiofilm therapeutic strategies

    Get PDF
    Klebsiella pneumoniae is a Gram-negative bacterium within the Enterobacteriaceae family that can cause multiple systemic infections, such as respiratory, blood, liver abscesses and urinary systems. Antibiotic resistance is a global health threat and K. pneumoniae warrants special attention due to its resistance to most modern day antibiotics. Biofilm formation is a critical obstruction that enhances the antibiotic resistance of K. pneumoniae. However, knowledge on the molecular mechanisms of biofilm formation and its relation with antibiotic resistance in K. pneumoniae is limited. Understanding the molecular mechanisms of biofilm formation and its correlation with antibiotic resistance is crucial for providing insight for the design of new drugs to control and treat biofilm-related infections. In this review, we summarize recent advances in genes contributing to the biofilm formation of K. pneumoniae, new progress on the relationship between biofilm formation and antibiotic resistance, and new therapeutic strategies targeting biofilms. Finally, we discuss future research directions that target biofilm formation and antibiotic resistance of this priority pathogen

    Foxtail Mosaic Virus-induced Flowering Assays in Monocot Crops

    Get PDF
    Virus-induced flowering (VIF) exploits RNA or DNA viruses to express flowering time genes to induce flowering in plants. Such plant virus-based tools have recently attracted widespread attention for their fundamental and applied uses in flowering physiology and in accelerating breeding in dicotyledonous crops and woody fruit-trees. We now extend this technology to a monocot grass and a cereal crop. Using the Foxtail mosaic virus-based VIF system, dubbed FoMViF, we showed that expression of florigenic Flowering Locus T (FT) genes can promote early flowering and spikelet development in proso millet, a C4 grass species with potential for nutritional food and biofuel resources, and in non-vermalized C3 wheat, a major food crop worldwide. Floral and spikelet/grain induction in the two monocot plants was caused by the virally expressed untagged or FLAG-tagged FT orthologues, and the florigenic activity of rice Hd3a was more pronounced than its dicotyledonous counterparts in proso millet. The FoMViF system is easy to perform and its efficacy to induce flowering and early spikelet/grain production is high. In addition to proso millet and wheat, we envisage that FoMViF will be also applicable to many economically important monocotyledonous food and biofuel crops

    The oyster genome reveals stress adaptation and complexity of shell formation

    Get PDF
    The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa. © 2012 Macmillan Publishers Limited. All rights reserved

    Causal Relationship Between Basal Metabolic Rate and Alzheimer’s Disease: A Bidirectional Two-sample Mendelian Randomization Study

    No full text
    Abstract Introduction Objective observational studies have shown that basal metabolic rate (BMR) decreases in patients with Alzheimer’s disease (AD), but the causal relationship between BMR and AD has not been established. We determined the causal relationship between BMR and AD by two-way Mendelian randomization (MR) and investigated the impact of factors associated with BMR on AD. Methods We obtained BMR (n = 454,874) and AD from a large genome-wide association study (GWAS) database (21,982 patients with AD, 41,944 controls). The causal relationship between AD and BMR was investigated using two-way MR. Additionally, we identified the causal relationship between AD and factors related with BMR, hyperthyroidism (hy/thy) and type 2 diabetes (T2D), height and weight. Results BMR had a causal relationship with AD [451 single nucleotide polymorphisms (SNPs), odds ratio (OR) 0.749, 95% confidence intervals (CIs) 0.663–0.858, P = 2.40E-03]. There was no causal relationship between hy/thy or T2D and AD (P > 0.05). The bidirectional MR showed that there was also a causal relationship between AD and BMR (OR 0.992, Cls 0.987–0.997, N SNPs18, P = 1.50E−03). BMR, height and weight have a protective effect on AD. Based on MVMR analysis, we found that genetically determined height and weight may be adjusted by BMR to have a causal effect on AD, not height and weight themselves. Conclusion Our study showed that higher BMR reduced the risk of AD, and patients with AD had a lower BMR. Because of a positive correlation with BMR, height and weight may have a protective effect on AD. The two metabolism-related diseases, hy/thy and T2D, had no causal relationship with AD

    Knowledge-Based Neuroendocrine Immunomodulation (NIM) Molecular Network Construction and Its Application

    No full text
    Growing evidence shows that the neuroendocrine immunomodulation (NIM) network plays an important role in maintaining and modulating body function and the homeostasis of the internal environment. The disequilibrium of NIM in the body is closely associated with many diseases. In the present study, we first collected a core dataset of NIM signaling molecules based on our knowledge and obtained 611 NIM signaling molecules. Then, we built a NIM molecular network based on the MetaCore database and analyzed the signaling transduction characteristics of the core network. We found that the endocrine system played a pivotal role in the bridge between the nervous and immune systems and the signaling transduction between the three systems was not homogeneous. Finally, employing the forest algorithm, we identified the molecular hub playing an important role in the pathogenesis of rheumatoid arthritis (RA) and Alzheimer’s disease (AD), based on the NIM molecular network constructed by us. The results showed that GSK3B, SMARCA4, PSMD7, HNF4A, PGR, RXRA, and ESRRA might be the key molecules for RA, while RARA, STAT3, STAT1, and PSMD14 might be the key molecules for AD. The molecular hub may be a potentially druggable target for these two complex diseases based on the literature. This study suggests that the NIM molecular network in this paper combined with the forest algorithm might provide a useful tool for predicting drug targets and understanding the pathogenesis of diseases. Therefore, the NIM molecular network and the corresponding online tool will not only enhance research on complex diseases and system biology, but also promote the communication of valuable clinical experience between modern medicine and Traditional Chinese Medicine (TCM)
    • …
    corecore