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Highlight: We have demonstrated that expression of FT genes from FoMV triggers 

early flowering in millet and wheat, therefore establishing a virus-induced flowering 

assay in cereal crops. 

Abstract  

Virus-induced flowering (VIF) exploits RNA or DNA viruses to express flowering time 

genes to induce flowering in plants. Such plant virus-based tools have recently attracted 

widespread attention for their fundamental and applied uses in flowering physiology 

and in accelerating breeding in dicotyledonous crops and woody fruit-trees. We now 

extend this technology to a monocot grass and a cereal crop. Using the Foxtail mosaic 

virus-based VIF system, dubbed FoMViF, we showed that expression of florigenic 

Flowering Locus T (FT) genes can promote early flowering and spikelet development in 

proso millet, a C4 grass species with potential for nutritional food and biofuel resources, 

and in non-vermalized C3 wheat, a major food crop worldwide. Floral and 

spikelet/grain induction in the two monocot plants was caused by the virally expressed 

untagged or FLAG-tagged FT orthologues, and the florigenic activity of rice Hd3a was 

more pronounced than its dicotyledonous counterparts in proso millet. The FoMViF 

system is easy to perform and its efficacy to induce flowering and early spikelet/grain 

production is high. In addition to proso millet and wheat, we envisage that FoMViF will 

be also applicable to many economically important monocotyledonous food and biofuel 

crops. 

Keywords: FoMV; Flowering time genes, VIF; Monocots, Proso millet; Wheat 

Abbreviations: ALSV, Apple latent spherical virus; BMV, Brome mosaic virus; 

BSMV, Barley stripe mosaic virus; CLBV, Citrus leaf blotch virus; CLCrV, Cotton leaf 

crumple virus; CP, coat protein; FoMV, Foxtail mosaic virus; FoMViF, FoMV-induced 

flowering; FT, Flowering Locus T; LD, long-day; PVX, Potato virus X; RdRP, 

RNA-dependent RNA polymerase; SD, short-day; VIF, virus-induced flowering; VIGS, 

virus-induced gene silencing; ZYMV, Zucchini yellow mosaic virus  
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Introduction 

Virus-induced flowering (VIF) uses RNA or DNA viruses as vectors to express 

flowering time genes such as Flowering Locus T (FT) (Kardailsky et al., 1999; Srikanth 

and Schmid, 2011) to induce flowering in plants (McGarry et al., 2017). This approach 

has recently attracted wide interest for its practical applications in accelerating breeding 

in crops and woody fruit-trees (McGarry et al., 2017; Qin et al., 2017). The first VIF 

was established in Cucurbita moschata through ectopic expression of Arabidopsis 

thaliana FT (AtFT) proteins from Zucchini yellow mosaic virus (ZYMV) to induce 

early flowering (Lin et al., 2007; Yoo et al., 2013). Subsequently, a Potato virus X 

(PVX)-based VIF was developed to express AtFT protein or mRNA to promote 

flowering in short-day (SD) tobacco (Nicotiana tabacum Maryland Mammoth, MM) 

under non-flowering long-day (LD) conditions (Li et al., 2009; 2011). Apple latent 

spherical virus (ALSV), Citrus leaf blotch virus (CLBV) and Cotton leaf crumple virus 

(CLCrV) were also later used to express FT for floral induction in soybean, apple, pear, 

gentian and lisianthus plants (Yamagishi and Yoshikawa, 2011; Yamagishi et al., 2011; 

2014; 2016; Fekih et al., 2016), cotton (McGarry and Ayre, 2012; McGarry et al., 2016) 

and citrus (Velazquez et al., 2016). More recently, we further characterized and 

developed the PVX-based VIF approach to assess FT protein function including 

investigations into the impact of single amino-acid mutations on the floral inducing 

function of the AtFT protein; the influence of various polypeptide tags on the AtFT 

activity; and the function of mono- and dicotyledonous FT and FT-like genes to induce 

flowering in MM tobacco under non-inductive conditions (Qin et al., 2017). These 

findings demonstrate that VIF represents an efficient system for functional analysis of 

proteins in flowering and a potential strategy to speed up crop breeding programme.  

To date, VIFs have only been developed in dicotyledonous plants (dicots) 

(McGarry et al., 2017; Qin et al., 2017), but not for monocotyledonous species 

(monocots) including any economically important cereal crops. Barley stripe mosaic 

virus (BSMV) has, however, been modified as a functional genomics tool for 

virus-induced gene silencing (VIGS) in barley (Hordeum vulgare L.) and wheat 
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(Triticum aestivum) (Holzberg et al., 2002; Meng et al., 2009; Pacak et al., 2010; Yuan 

et al., 2011), while VIGS platforms based on Brome mosaic virus (BMV) in rice (Oryza 

sativa L.), barley, and maize (Zea mays L.; Ding et al., 2006); Bamboo mosaic virus in 

Brachypodium distachyon (Liou et al., 2014); Rice tungro bacilliform virus in rice 

(Purkayastha et al., 2010) and Cucumber mosaic virus in maize have also been reported 

(Wang et al., 2016). Recently, Foxtail mosaic virus (FoMV) was engineered as an 

effective VIGS system to induce gene silencing in barley, wheat, sorghum (Sorghum 

bicolor), foxtail millet (Setaria italica), green foxtail (Setaria viridis) and the sweet 

corn line Golden 3 Bantam (Liu et al., 2016; Mei et al., 2016). Moreover, BSMV and 

FoMV have been exploited to allow over-expression of endogenous and exogenous 

proteins in both dicots and monocots (Zhang et al., 2019; Liu and Kearney, 2010; 

Bouton et al., 2018; Cheuk and Houde, 2018), indicating these viruses have the 

prospective for being modified as valuable VIF tools in monocots. 

FoMV, like PVX, is a positive-sense single-stranded (ss) RNA potexvirus. 

FoMV can infect 56 Poaceae species and at least 35 dicot species (Paulsen and Niblett, 

1977; Short and Davies, 1987). The FoMV genome consists of a 5’-methylguanosine 

cap and a 3’-polyadenylated tail. It encodes an RNA-dependent RNA polymerase 

(RdRP), three movement proteins expressed from the triple-gene block, coat protein 

(CP) and a small unique 5A polypeptide (Robertson et al., 2000; Bruun-Rasmussen et 

al., 2008). Similar to PVX, FoMV has been used to silence (Ruiz et al., 1998; Lin et al., 

2008; Zhou et al.; 2012; Chen et al., 2015a; 2015b Zhao et al., 2016) or over-express 

genes in plants (Liu et al., 2016; Mei et al., 2016; Bouton et al., 2018). To test whether 

FoMV can be used for VIF (designated FoMViF hereafter) in monocots, we took the 

advantage of the FoMV vector previously developed in our groups (Liu et al., 2016) to 

express four flowering time genes including AtFT, rice Hd3a, tomato (Solanum 

lycopersicum) SFT and tobacco NtFT4 (Kojima et al., 2002; Lifschitz et al., 2006; Harig 

et al., 2012) in proso millet (Panicum miliaceum L.) and wheat. We have demonstrated 

that expression of FT genes from FoMV was able to trigger early flowering in monocot 

crops, therefore successfully established a virus-induced flowering assay FoMViF in 

cereal crops. 
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Materials and Methods  

Plant Materials and Growth Conditions 

Plants of N. benthamiana, proso millet (Panicum miliaceum L. CGRIS 00000390) and 

winter wheat (Triticum aestivum L, 2n=6x=42, AABBDD, originated from the elite 

variety YZ4110) were grown under long-day (LD, 16 h light/8 h dark) or short-day (SD, 

8 h light/16 h dark) conditions at 23°C. For vernalization, wheat were sown, germinated 

and grew at 4°C for 4 weeks before being transferred to grow at 23°C under LD. 

Construction of FoMViF Vectors 

The Arabidopsis, rice, tomato, tobacco FT homologous genes were PCR amplified from 

using plasmid PVX/AtFT, PVX/Hd3a, PVX/SFT, and PVX/NtFT4 (Qin et al., 2017) as 

DNA templates, PrimeSTAR HS DNA polymerase and four sets of primers 

FoMV-AtFT-F/R, FoMV-Hd3a-F/R, FoMV-SFT-F/R and FoMV-NtFT4-F/R (Table S5) 

respectively. The PCR products were digested with HpaI and AscI, and cloned into the 

HpaI/AscI sites of the FoMV-sg vector (Liu et al., 2016) to produce FoMV/AtFT, 

FoMV/Hd3a, FoMV/SFT and FoMV/NtFT4 (Fig. 1B). To in-frame fuse the 3xFLAG to 

each of the FT open reading frame, we first amplified the 3xFLAG sequence using the 

primer FoMV-FTs-FLAG-R along with FoMV-AtFT-FLAG-F, FoMV-Hd3a-FLAG-F/ 

FoMV-SFT-FLAG-F or, FoMV-NtFT4-FLAG-F (Table S5), respectively. The PCR 

reaction contained 0.5µl 10mM primer F/R, 0.5µl 2.5mM dNTPs, 1µl 10ng/µl template, 

2µl 10X PrimeSTAR HS DNA polymerase buffer, 0.1µl PrimeSTAR HS DNA 

polymerase and 15.4µl ddH2O. The amplification was carried out with 30 cycles of 

95 °C for 30 seconds, 58 °C for 30 seconds and 72 °C for 30 seconds, followed 1 cycle 

of 72 °C for 10 min and then at 4°C. The amplified fragments were then assembled by 

Seamless Cloning (pEASY-Uni Seamless Cloning and Assembly Kit, TransGen Biotech) 

into the AscI-linearized FoMV/AtFT, FoMV/Hd3a, FoMV/SFT or FoMV/NtFT4 to 

generate FoMV/AtFT-FLAG, FoMV/Hd3a-FLAG, FoMV/SFT-FLAG and 

FoMV/NtFT4-FLAG (Fig. 1B). All FoMViF constructs were confirmed by nucleotide 

sequencing. Each of the FoMViF vectors was mobilized into Agrobacterium 
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tumefaciens GV3101 as previously described (Hong et al., 1996), confirmed by PCR 

and Agrobacterium glycerol stocks were made and kept at -80°C freezer. 

Enrichment of FoMV vectors in Nicotiana benthamiana 

Agrobacterium tumefaciens GV3101 containing each of the FoMV vectors were freshly 

cultured from Agrobacterium stocks. Overnight cultures were then centrifuged at 8,000 

rpm for 10 min and resuspended in sterile distilled water to make the final OD595 to 1.0. 

Agrobacterium suspension (OD595: 1.0) was then infiltrated into young leaves of N. 

benthamiana at six-leaf stage through needleless 0.5-ml syringe. Plants were then 

grown in an insect-free growth room at 23°C under LD. FoMV infection normally 

caused mild leaf curling and mosaic symptoms on systemic leaves at 10-14 days after 

agroinfiltration. At this stage, young leaf tissues were collected and used directly for 

FoMViF assays or freeze-dried and stored at -80°C freezer for later use. 

FoMViF in proso millet and wheat 

Sap was prepared by grinding 1 gram of leaf tissues of healthy or FoMV-infected N. 

benthamiana in 1 ml TE (10mM Tris-1mM EDTA buffer, pH8.0). Young leaves of 5-8 

proso millet plants or wheat plants without vernalization treatment at 2-3 leaf stage 

(17-26 days after sowing seeds; DASS) were mechanically inoculated with sap (Liu et 

al., 2016). Such inoculation should be handled with care because heavy-handed rubbing 

of leaves sometimes damaged young plants and led them to premature death. For mock 

controls in all FoMViF experiments, plants were inoculated with healthy N. 

benthamiana leaf sap prepared in TE buffer. Plants were then grown at 23°C under the 

non-inductive LD conditions in insect-free growth rooms. Local and systemic viral 

symptoms, flowering time and spikelet development in millet and wheat plants were 

daily examined after sap inoculation, and phenotypically recorded using a Nikon D7000 

camera. Sap inoculation of proso millet or wheat often resulted in 100% plant infection. 

Each set of FoMViF assays was repeated at least twice. For statistical analysis, equally 

squared variances and two-tailed Student’s t-tests against FoMV were carried out to 

verify if changes of flowering time in these FoMViF assays would show statistically 
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significant differences.   

RT–PCR 

Total RNA was extracted from proso millet and wheat leaf tissues with obvious viral 

symptoms at 7-14 days post-inoculation. RNA was also isolated from healthy leaves 

that were mock-inoculated and used as controls. First-strand cDNA was synthesized 

from DNase I-treated total RNAs by M-MLV Reverse Transcriptase according to the 

manufacturer’s instructions (Promega). RT-PCR was performed to detect virally 

expressed FT RNAs using a set of primers FoMV seq-F and FoMV seq-R. The PCR 

reaction contained 0.5µl 10mM primer F/R, 0.5µl 2.5mM dNTPs, 2µl 1/10 cDNA 

template, 10µl 2xTaq MasterMix (CWBIO) and 8.5µl ddH2O. The amplification was 

carried out with 40 cycles of 95 °C for 30 sec, 58 °C for 30 sec and 72 °C for 30 sec. 

The resulting RT-PCR products were isolated and directly sequenced using primer 

FoMVseq-F (Table S5) as previously described (Qin et al. 2017). Proso millet and 

wheat 18S rRNAs were served as the internal control (Table S5). Densitometric analysis 

of RT-PCR bands was performed using ImageJ software (National Institutes of Health) 

to show the stability of recombinant viruses. Intensity of the larger or small bands in 

individual agarose gels were measured using the ImageJ software following software 

supplier’s guidance. The relative RNA levels were determined by the ratio of intensities 

of upper (recombinant virus) band against lower (wild-type virus) band.  

Protein extraction and Immumoblot analysis 

Total protein was extracted from symptomatic young leaf tissues at 7-14 days post 

inoculation using extraction buffer containing 50mM Tris, pH7.5, 150mM NaCl, 2mM 

EDTA, 5% glycerol, 0.1% Tween 20, 1mM dithiothreitol, and 0.2mM PMSF (Hong et 

al., 1996). Protein was also extracted from healthy leaves that were mock-inoculated 

collected and used as controls. 10 µg of total proteins were separated by electrophoresis 

on 10% sodium dodecyl sulfate (SDS)-polyacrylamide gels, transferred to a 

nitrocellulose membrane (Bio-Rad), blotted with 1:2000 mouse anti-FLAG 

(Sigma-Aldrich) antibodies, detected by 1:5000 goat anti-mouse IgG horseradish 
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peroxidase-conjugated secondary antibodies (Santa Cruz Biotechnology) following the 

ECL chemiluminescence detection protocol. Ponceau S staining was used as show to an 

equal loading of total protein samples. 

Results 

FoMV-induced flowering (FoMViF) in monocots 

We have previously described the development of the FoMV-based vector to deliver 

hairpin double-stranded (ds) RNAs in order to silence genes in monocot plants (Liu et 

al., 2016). In this vector, the FoMV CP subgenomic RNA promoter was duplicated 

upstream of the original CP promoter. We envisaged that the duplicated promoter, as 

those designed in the PVX vector (van Wezel et al., 2002), could also direct the 

biosynthesis of an extra subgenomic RNA from the recombinant viral genome as 

mRNA to promote efficient translation of the protein of interest. This is how flowering 

time genes could be virally expressed via FoMV in monocot plants (Fig, 1). The 

procedure of the FoMViF assay is outlined in Fig. 1A and can be achieved as follows: (1) 

The FT gene (or any flowering gene) is cloned into the binary FoMV vector (Fig. 1B) 

and verified by sequencing. (2) The recombinant FoMV vector is mobilised into 

Agrobacterium tumefaciens GV3101 or LBA4404. (3) Agrobacterium carrying the 

binary FoMV vector can be directly injected into the stem tissues, a procedure called 

agroinjection, to inoculate monocot plants for FoMViF. Alternatively, we often include 

an extra step where the Agrobacterium carrying the FoMV vector is first infiltrated into 

N. benthamiana leaves via agroinfiltration to enrich the titre of recombinant FoMV 

inoculum for the subsequent infection of the monocot plants. Systemic N. benthamiana 

leaf tissues infected with FoMV are collected, and the fresh leaf materials can be either 

used directly or freeze-dried for storage at -80°C for later use. Sap is prepared by 

grinding fresh or dried leaf tissues in 10mM Tris-EDTA buffer (pH8.0); and 

mechanically inoculated onto young leaves of monocot plants. Plants are then grown 

under LD or SD conditions and monitored for floral induction (Li et al., 2009; Qin et al., 

2017).  
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In this work we cloned both free and 3xFLAG-tagged, Arabidopsis AtFT, rice 

Hd3a, tomato SFT and tobacco NtFT4 into the FoMV vector (Liu et al., 2016) and 

produced FoMV/AtFT, FoMV/Hd3a, FoMV/SFT, FoMV/NtFT4, FoMV/AtFT-FLAG, 

FoMV/Hd3a-FLAG, FoMV/SFT-FLAG and FoMV/NtFT4-FLAG constructs (Fig. 1B). 

These FT genes display a range of nucleotide polymorphisms (Fig. S1), although at the 

amino-acid level their protein products are conserved (Fig. S2). We investigated 

inductive and non-inductive conditions for early flowering in proso millet and the 

winter wheat, and then tested whether these FT genes could be expressed by FoMV and 

whether viral expression of FT genes could trigger early flowering in proso millet and 

wheat under non-inductive conditions. 

Flowering conditions in proso millet and wheat 

In order to test the potential application of FoMViF in monocots, we selected two cereal 

crops – one is the lesser-studied proso millet whilst another is the major food crop 

wheat. Proso millet is a C4 photosynthetic annual grass species that is well adapted to 

many soil and climatic conditions. It produces grains rich in starch, protein, essential 

amino acids, health-promoting phenolic compounds and high calcium content, but 

lacking gluten, thus it is particularly nutritious for people who cannot tolerate wheat. 

Moreover, starch derived from proso millet can be readily converted to ethanol. There is 

an increased demand for breeding new proso millet varieties for human nutrition 

products and as an alternative to corn for biofuel production (Taylor et al., 2006; Saleh 

et al., 2012). To test how proso millets respond to photoperiods in our laboratories, we 

grew proso millet at 23°C under SD (8-hr light/16-hr dark), LD (16-hr light/8-hr dark) 

or LD/SD mixed conditions (Fig. 2). Under SD plants started to produce millet spikelet 

at an average of 56 days after sowing seeds (DASS) (Fig. 2A). However, at this time 

under LD, no spikelet developed, but development of millet spikelet was delayed by 3-5 

weeks (Fig. 2B). The appearance of spikelet in proso millet occurred at approximately 

88 DASS on average under LD (Fig. 2C, Table 1). We also germinated seeds and grew 

plants initially under LD for 4 weeks, then changed the growth condition to SD. Under 

such LD/SD transfer conditions, proso millet started to flower and produce spikelet at 
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about 63 DASS (Fig. 2D). These data show that proso millet is a facultative SD plant, 

consistent with previous characterization (Kumar et al., 1977).  

For the hexaploid wheat, vernalization treatment under cold temperature is 

essential for flowering/heading (Zhang et al., 2019). In our laboratories we found that 

giving wheat a vernalization period of 4 weeks at 4°C and then growing at 23°C under 

LD conditions (16-hr light/8-hr dark) induced flowering/heading at approximately 90 

DASS (Fig. 2E). Under such conditions, wheat plants with mock inoculation or treated 

with the empty FoMV or the four FoMViF vectors all started to flower in the same time 

(Fig. S3). Therefore, these conditions could not be used for our FoMViF assays in wheat. 

However, without vernalization, wheat remained vegetative at 23°C under LD settings 

and no flowering/heading was observed at 126 DASS or later. Thus, we choose the less 

inductive LD (for proso millet), or LD without vernalization treatments (for wheat) to 

examine whether FoMViF could trigger early flowering/heading and spikelet 

development in these monocot plants. 

FoMViF induces early flowering in proso millet 

Although agroinjection could be directly used to inoculate FoMV into monocot plants, 

we preferred to use higher titer viral inoculum enriched via agroinfiltration of N. 

benthamiana in our FoMViF assay (Fig. 1A). We mechanically inoculated young leaves 

of proso millet plants with virus-infected N. benthamiana leaf sap at the 3-leaf stage (21 

DASS) and found that this led to almost 100% occurrence of FoMV infection (Fig. 3). 

Compared to proso millet with mock-inoculation (Fig. 3A), plants inoculated with 

FoMV, FoMV/AtFT, FoMV/Hd3a, FoMV/SFT or FoMV/NtFT4 developed local 

infections approximately 1 week post-inoculation (i.e. 28 DASS), as evidenced by 

development of irregular mosaic and yellowing lesions on the inoculated leaves (Fig. 

3B-F). Similar viral symptoms appeared on emerging systemic young leaves and 

FoMV-FT mRNA was readily detectable by RT-PCR in these leaf tissues although we 

also detected a smaller band (Fig. 3G; Fig. S4; Table S1). These results suggest that 

some recombinant FoMViF viruses lost the inserted FT genes and reversed to FoMV. 

Systemically infected plants were often dwarfed when compared to mock-inoculated 
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healthy control plants (Fig. 3H-M). However, at an average of 63 DASS, proso millet in 

which the rice Hd3a florigen was expressed by FoMV/Hd3a developed spikelets (Fig. 

3K, Table 1, Table S2). Millet spikelets also appeared later in plants that were infected 

with FoMV/AtFT (Fig. 3J) or FoMV/SFT (Fig. 3L) at 76 or 75 DASS on average, 

respectively (Table 1; Table S2). At this time no flowering or spikelet development was 

observed in mock-inoculated or FoMV-infected millet plants (Fig. 3H and I). These 

control plants produced spikelets afterwards, but always later than exogenous 

FT-expressing plants except for FoMV/NtFT4 which only triggered early flowering in 

one experiment (Fig. 3M; Table 1; Table S2). Taken together, these results demonstrate 

a successful establishment of FoMViF in proso millet, a monocot grass species. 

Differential activities of monocot and dicot FT genes in flowering induction in proso 

millet 

Rice Hd3a, and the dicot FT genes to a lesser extent, when expressed from the FoMViF 

vectors promoted early floral and spikelet development in proso millet (Fig. 3), 

suggesting that the monocot and dicot FT genes had different capabilities to accelerate 

or induce flowering in our FoMViF assays (Table 1; Table S2). We observed visible 

FoMV/FT infection (Fig. 3C-F) and detected efficient accumulation of virally expressed 

FT mRNAs in all tested plants (Fig. 3G; Fig. S4). Interestingly, AtFT and SFT showed 

some effect on flowering induction and spikelet formation, whilst NtFT4 had very little 

impact on flowering and spikelet-forming time (Table 1, Table S2). In contrast, 

expression of the rice Hd3a gene from FoMV/Hd3a induced floral and spikelet 

development, markedly earlier than the three dicot counterparts and controls (Table 1; 

Table S2). Considering the equivalent expression levels of viral FT transcripts (Fig. 3G) 

but varied flowering time (Fig. 3J-M; Table 1; Table S2) in proso millets treated with 

different FoMViF vectors, we concluded that the monocot rice Hd3a gene is the most 

efficient at inducing flowering in proso millet among the four tested monocot and dicot 

FT genes. 

Expression of FLAG-tagged FT proteins affects flowering time in proso millet 
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To further investigate the correlation of FT gene expression with the induction of early 

flowering in proso millets under LD conditions, we used 3xFLAG to tag Hd3a, AtFT, 

SFT and NtFT4 (Fig. 1B; Fig. 4). In plants that were infected with FoMV/AtFT, 

FoMV/Hd3a, FoMV/SFT or FoMV/NtFT4, we were able to detect both the 

FoMV-FT-FLAG mRNA by RT-PCR (Fig. 4A) and the FLAG-tagged FT proteins 

probed with a specific anti-FLAG antibody (Fig. 4B and C). Expression of both FT 

transcripts and protein products was clearly linked with the viral infection of these 

plants (Fig. S5). No virally expressed FT RNA or FT protein was detected in 

mock-inoculated proso millets, although FoMV RNA but not FT protein was readily 

detectable in FoMV-infected plants (Fig. 4A-C). Expression of the FLAG-tagged 

monocot (Hd3a-FLAG) and dicot FT proteins (AtFT-FLAG, SFT-FLAG and 

NtFT4-FLAG) was able to induce early flowering when compared to mock-inoculated 

or FoMV-infected control plants (Fig. 5A-F; Table 2; Table S3). We also noticed a 

negative impact of the FLAG tag on the florigenic activity of the free rice Hd3a protein. 

However, the influence of the FLAG tag on the functionality of dicot FT proteins was 

less obvious (Table 1; Table 2). Consequently, the four FT-FLAG fusion proteins 

enabled plants to flower 4-11 days earlier although they did not show much difference 

among each other to shorten flowering time in proso millets under LD conditions (Fig. 5; 

Table 2; Table S3). 

FoMViF in wheat 

To test the feasibility of the FoMViF assay in other monocots, we mechanically 

inoculated young wheat plants at 2-3 leaf stage (approximately 21 DASS) with sap in 

10mM Tris-1mM EDTA buffer (pH8.0) produced from healthy N. benthamiana (mock) 

or plants infected with FoMV/Hd3a (Fig. 1A; Fig. 6). Mock-inoculated controls and 

virus-infected wheat plants were then grown at 23°C under LD without vernalisation (i.e. 

non-flowering inductive conditions). As we previously reported, FoMV could 

effectively infect wheat (Liu et al., 2016). Local chlorosis and yellowing developed on 

sap-inoculated leaves at approximately 1-week post-inoculation (i.e. 28 DASS; Fig. 6A 

and B), and systemic infection occurred subsequently. No flowering/heading and no 
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grain development were observed in mock-inoculated wheat plants at 8-weeks 

post-inoculation (i.e. 84 DASS; Fig. 6C), at which time (approximately 77 DASS on 

average) the first heading was clearly appearing on wheat plants that were infected with 

FoMV/Hd3a (Fig. 6D; Table S4). At 119 DASS, control plants remained vegetative and 

underwent no reproductive transition (Fig. 6E) whilst wheat plants with virally 

expressed Hd3a developed the 2nd, 3rd and 4th heads at this stage (Fig. 6F and G). Indeed, 

even after the wheat grains fully matured in plants in which Hd3a was expressed from 

FoMV/Hd3a, no obvious heading/flowering was noticeable in all control plants, 

although these plants (including mock-inoculated and FoMV- or FoMV/Hd3a-FLAG 

infected wheats) started to develop heading at very late stage (Fig. 6G; Table S4). 

Moreover, the induction of flowering and development of spikelet were well-correlated 

with the expression of the Hd3a transcripts by FoMV/Hd3a in virus-infected wheat, 

even if the level of the Hd3a mRNA was relatively low (Fig. 6H; Table S1). The 

FLAG-tagged Hd3a fusion protein was readily detected in wheat plants infected with 

FoMV/Hd3a, but not FoMV or mock treatment (Fig. 6I; Fig. S6). These results show 

that FoMViF is functional in the economically important cereal crop wheat. 

Discussion 

Plant viruses consist of either RNA or DNA genome. These viral genomes can be 

modified as RNA delivery vehicles and gene expression vectors for functional genomics 

in plants. For instance, VIGS has emerged as a powerful tool to inhibit gene expression 

either at the transcriptional, post-transcriptional or translational level for dissecting gene 

function in dicots and monocots, including important crops recalcitrant to classical 

forward or reverse genetic manipulation (Liu et al., 2002; Becker and Lange, 2009; 

Tang et al., 2010; Kanazawa et al., 2011; Senthil-Kumar and Mysore, 2011; Sha et al., 

2014; Chen et al., 2015c; Qin et al., 2015). Using viruses to deliver small guide RNA 

can lead to virus-induced genome editing in plants (Baltes et al., 2014; Yin et al., 2015). 

Virus-based technology has also been used to study RNA signalling that are associated 

with different plant physiological processes such as flowering and tuberization (Li et al., 
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2009; 2011; Cho et al., 2015). On the other hand, transient over-expression of 

exogenous or endogenous genes from engineered viruses can result in gain-of-function 

or virus-induced gene complementation in plant development and growth, fruit ripening, 

plant response to biotic stresses and viral DNA replication (Hong et al., 1997; Van 

Wezel et al., 2002; Hong et al., 2003; Lin et al., 2008; Zhou et al., 2012; Kong et al., 

2013; Bouton et al., 2018). Moreover, VIF is the latest example of how plant viruses can 

be exploited for the benefit of fundamental research in the field of flower physiology 

and practical applications in facilitation of plant breeding (McGarry et al., 2017; Qin et 

al., 2017). It should be noted that VIGS is completely different from VIF. VIGS is a 

means to knock-down target gene expression via homologous RNA-mediated 

degradation of target mRNA, whilst VIF such as FoMViF involves using virus vector to 

transiently over-express flowering time gene to induce early flowering in plants. Thus, 

the two-plant virus-based technologies differ in principle. 

Since the early VIF assay was reported in cucurbit (Lin et al., 2007) and tobacco 

(Li et al., 2009), several VIF systems have been developed in dicots including cotton 

and fruit trees (Yamagishi and Yoshikawa, 2011; McGarry and Ayre, 2012; Yamagishi et 

al., 2011; Yamagishi et al., 2014; Fekih et al., 2016; McGarry et al., 2016; Velazquez et 

al., 2016; Yamagishi et al., 2016; Qin et al., 2017; McGarry et al., 2017). These works 

reveal the mechanism about how VIF operates and the potential of VIF for the study of 

plant reproductive biology and in crop breeding (McGarry et al., 2017; Qin et al., 2017). 

However, no VIF has been yet developed for any cereal crops such as wheat, rice, maize 

and millets that are essential for human nutrition, global food security, agriculture, and 

biofuel industry. Lack of VIF in monocots may be due to a shortage of suitable viruses 

for development of such technology. Unlike VIGS vectors which only involve delivery 

of a short fragment of translatable or non-translatable RNA homologous to the target 

genes to plant cells, virus vectors for VIF or production of functional proteins need to 

have the capacity to express entire mRNA from which protein products can be 

translated. Only a few monocot-infecting viruses such as BSMV, Wheat streak mosaic 

virus; Triticum mosaic virus and FoMV have been shown to have this capacity (Tatineni 

et al., 2015; Bouton et al., 2018; Cheuk and Houde, 2018). Here we demonstrate that 
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FoMV can be exploited to express FT genes and induce early flowering and spikelet 

development in grass proso millet (Figs 1-5; Tables 1-2; Tables S2-S3) and cereal crop 

wheat (Fig. 6; Table S4).  

Stability is essential for using recombinant viruses as toolbox for gene 

expression in plants. Recombinant viruses are known to be unstable and commonly 

undergo rearrangements to its native form during infection. Moreover, longer infection 

times likely undergo rearrangements to their native forms during infection. These are 

potential issues for using recombinant virus technology in plants. Indeed, in our 

FoMViF assays loss of inserted FT genes from recombinant FoMV genome occurred 

during viral infection of proso millet and wheat plants (Fig. 3G; Fig. 4A; Fig. 6H; Table 

S1). On the other hand, florigenic FT proteins, once expressed during the early stage of 

plant development, would prime and initiate the vegetative-to-reproductive transition 

and then lead to flowering. This implies that no persistent production of FT mRNA and 

protein is needed at the later stage of plant growth. In this regard, stability of 

recombinant viruses as such may not impose a significant challenge or weakness for 

VIF technology, such as FoMViF described here. This notion is supported by the 

finding that even if a population of FoMViF vectors converted back to FoMV in proso 

millet and wheat (Table S1), these plants with virally expressed FT proteins still 

flowered early (Fig. 3; Fig. 4; Fig. 6). Indeed, loss of recombinant sequences, and 

reversion to a naturally occurring structure can be argued as advantageous for 

containment. 

Another concern associated with VIF and gene expression from recombinant 

viruses in general is the potential VIGS effect. Since FoMV is a ssRNA virus, it has a 

dsRNA intermediate which are active triggers for VIGS in plants. As such, many ssRNA 

viruses are commonly used for VIGS and less commonly for gene delivery and protein 

expression. However, this does not seem to be an issue for FoMViF. Firstly, FT proteins, 

and the phosphatidylethanolamine-binding protein domains particularly are conserved 

among different plant species (Turck et al., 2008; Fig. S2). At the nucleotide level, the 

overall homologies of FT genes and mRNAs are also notably high. However, these 

mRNA sequences are not identical, instead nucleotide polymorphisms are common. No 
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20 or longer nucleotides are identical among the FT mRNAs (Fig. S1; unpublished 

data). Evidently, there is insufficient homology between the millet PmFT and the rice or 

dicot FTs to result in silencing. Secondly, our FoMViF assays were carried out under 

non-flowering inductive conditions. This implies that little or no endogenous FT mRNA 

would be produced and thus there would be little or no target mRNA for VIGS to occur. 

Thirdly, viral expression of florigenic FTs could occur during the early and/or later 

infection stage, thus, triggering plant to flower no matter whether VIGS would be 

induced later or not. This is evident as viral expression of FT genes even native PmFT 

(unpublished data), can result in early flowering in proso millet. 

Apart from these potential disadvantages, the FoMViF has several advantages 

including (1) the monopartite genome makes FoMV much easier to handle. Moreover, 

the enriched viral inoculum in N. benthamiana is highly infectious in monocot plants 

(this work; Liu et al., 2016; Bouton et al., 2018). (2) The broad spectrum of dicot and 

monocot host plants allow FoMViF and other FoMV-based technology applicable to 

many of the most important food and biofuel crops such as wheat, millets and maize. 

This is particularly useful for functional genomics in monocot crops including wheat 

and millets in which genetic manipulation is difficult or no transformation system is yet 

available. (3) As shown in our work here and those recently reported by Bouton et al 

(2018), FoMV can be utilized to efficiently express small and large proteins for 

“gain-of-function” analysis in monocots. (4) The differential activities among mono- 

and dicot FT genes, as well as impacts of an FLAG tag on FT function revealed in our 

work provide choices of florigenic genes for FoMViF-based cereal crop breeding 

programme dependent on various degrees of requirements for floral and spikelet/grain 

induction.  

Our FoMViF demonstrate that heterologous FT genes from either monocot (rice) 

or dicot (tomato and Arabidopsis) plants can trigger early flowering and early spikelet 

development in monocotyledonous proso millet (Fig. 3), and wheat in the case of Hd3a 

(Fig. 6), consistent with our previous finding that these FT genes were also able to 

induce early flowering in the PVX-based VIF system in dicot tobacco plants (Qin et al., 

2017). Interestingly, the rice Hd3a was equally efficient as SFT, AtFT and NtFT4 to 
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induce flower in dicot tobacco plants under non-inductive conditions (Qin et al., 2017). 

By contrast, the three dicot SFT, AtFT and NtFT4 seem much less active than Hd3a in 

monocot proso millet (Fig. 3; Table 1) although their protein products share high amino 

acid identities (Fig. S2). We also found that the FLAG tagging could affect the function 

of FT proteins (Fig. 5; Fig. 6). These results further support that the photoperiodic 

FT-mediated pathway in floral induction is conserved among different plants (Turck et 

al., 2008); but also imply that this pathway may have undergone evolutionary 

divergence in dicot and monocot species. Moreover, the FoMViF works in C3 wheat 

(Fig. 6), reaffirming the idea that the technology can be applied to both C3 and C4 

crops. 

Conclusions 

Virus-induced flowering (VIF) has recently attracted extensive interest for its practical 

applications in accelerating breeding in dicotyledonous plants and woody fruit-trees. We 

now extend this technology to a monocot grass and a cereal crop. Using the 

FoMV-based VIF system, we showed that expression of FT orthologues can promote 

early flowering and development of spikelet in proso millet, a C4 grass species with 

potential for nutritional food and biofuel resources, and in wheat, a main food crop 

worldwide. Floral induction in the two monocot plants is caused by the virally 

expressed FT genes, and the florigenic activity of rice Hd3a was more pronounced than 

its dicotyledonous counterparts in proso millet. This system is easy to perform and the 

efficacy to induce flowering is high. In addition to proso millet and wheat, we envisage 

that FoMViF will be also applicable to many important food and biofuel monocots in 

terms of functional genomics as well as molecular breeding for cereal improvement. 

Supporting information 

Fig. S1 Comparisons of tomato SFT, tobacco NtFT4, and rice Hd3a, wheat TaFT1 and 

Arabidopsis AtFT nucleotide sequences 

Fig. S2 Comparisons of Arabidopsis AtFT, tobacco NtFT4, tomato SFT, rice Hd3a, and 
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wheat TaFT1 protein sequences 

Fig. S3 Vernalization rescinds impact on FoMViF to induce early heading/flowering in 

wheat 

Fig. S4 Sequencing confirmation of heterologous FT gene expression in proso millet 

Fig. S5 Systemic symptoms of FoMV infection in proso millet 

Fig. S6 Original blot and PAGE gel used for Fig. 6I. 

Table S1 Stability of recombinant FoMViF vectors in plants 

Table S2 Data for FoMViF in proso millet 

Table S3 Data for FLAG-tagged FoMViF in proso millet 

Table S4 Data for FoMViF in wheat 

Table S5 Primers used in this work 
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TABLE 

Table 1 FoMViF in proso millet
*
 

 
Expt I Expt II Expt III Expt I-III P value** 

Mock 78.2 ± 1.9 91.3 ± 2.3 92.7 ± 3.3 87.4 ± 8.0 0.3733 

FoMV 74.6 ± 4.6  80.0 ± 0.0 86.5 ± 5.1 80.4 ± 6.0 n.a. 

FoMV/AtFT 73.4 ± 6.8  72.8 ± 1.5 82.8 ± 3.9 76.3 ± 5.5 0.4892 

FoMV/Hd3a 59.6 ± 1.1  59.5 ± 1.0 68.3 ± 1.5 62.5 ± 5.1 0.0147 

FoMV/SFT 72.0 ± 1.6 71.0 ± 0.7 83.0 ± 5.0 75.3 ± 6.7 0.3117 

FoMV/NtFT4 71.6 ± 4.3 83.4 ± 0.5 86.3 ± 2.9 80.4 ± 7.8 0.9308 

*Raw data for flowering time (Days after sowing seeds, DASS) in each experiment are shown in 

Table S2. The flowering time (DASS) in each experiment and overall is represented as Mean ± 

SD. **P values generated in equally squared variances/two-tailed Student’s t-test against FoMV 

for the overall flowering time are shown. P≤0.05 is regarded to have a statistically significant 

difference. n.a.: not applicable. As demonstrated in individual experiments (Table S2), only 

viral transient expression of rice Hd3a triggered significantly early flowering.   
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Table 2 FLAG-tagged FoMViF in proso millet* 

 
Expt I Expt II 

 DASS P value** DASS P value** 

Mock 80.0 ± 0.0 0.006 80.0 ± 2.3 0.08 

FoMV 77.5 ± 1.7 n.a. 77.0 ± 0.0 n.a. 

FoMV/AtFT-FLAG 69.5 ± 3.7 0.008 73.6 ± 1.1 0.001 

FoMV/Hd3a-FLAG 66.6 ± 2.1 6.67x10
-5

 73.4 ± 0.9 9.62x10
-5

 

FoMV/SFT-FLAG 67.8 ± 3.6 0.002 73.2 ± 1.7 0.012 

FoMV/NtFT4-FLAG 70.7 ± 3.5 0.018 72.6 ± 1.8 0.005 

*Raw data are available in Table S3. Flowering time is shown in days after sowing seeds (DASS; 

Mean ± SD) in each experiment.
 
**P values generated in equally squared variances/two-tailed 

Student’s t-test against FoMV are shown. P≤0.05 is regarded to have a statistically significant 

difference. n.a.: not applicable.   
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FIGURE LEGENDS 

Fig. 1 A FoMV-induced flowering (FoMViF) assay in monocotyledonous plants. A, 

Outline of the FoMViF procedure in monocots. B, FoMV vectors for expression of 

florigen genes. The genome of Foxtail mosaic virus (FoMV) encodes a 152Kd 

RNA-dependent RNA polymerase (RDRP), three movement proteins (26K, 11.3K and 

5.8K), coat protein (CP) and the small 5A polypeptide. The duplicated CP subgenomic 

RNA promoters are indicated. The cDNA copy of the FoMV genomic RNA is under the 

control of the enhanced CaMV 35S promoter and the NOS terminator in a plant binary 

vector (Liu et al., 2016). The left and right borders (LB and RB) of the Ti-plasmid are 

indicated. Arabidopsis AtFT, rice Hd3a, tomato SFT and tobacco NtFT4 and their 

FLAG-tagged genes were cloned downstream of the duplicated CP promoter into the 

HpaI/AscI sites of the FoMV vector. The positions of primers FoMVseqF/FoMVseq-R 

(Table S5) which were used for colony-PCR screening, sequencing and RT-PCR 

detection are indicated along the FoMV genome.  

Fig. 2 Photoperiodic effects on flowering time in proso millet and wheat. A, Proso 

millet plant flowered at an average of 56 DASS in SD. B, Proso millet plant remained 

vegetative at 56 DASS in LD. C, Vegetative-reproductive transition in proso millet in 

LD. Plants started to flower at an average of 88 DASS in LD. D, Proso millet plant 

flowered at 63 DASS under its growth under LD for 4 weeks and transferred to SD. E, 

Flowering time/heading date in wheat. Wheat plants underwent vernalization treatment 

for 4 weeks, then grew under LD and started to flower (heading) at approximately 90 

DASS. Plants were photographed at 56 DASS (A and B); 63 DASS (D); 84 DASS (C) 

and 90 DASS (E). The boxed sections of each panel were enlarged to show clear 

phenotypes. Bar = 3 cm. 

Fig. 3 Viral expression of heterologous monocot and dicot florigen genes induces 

flowering and early spikelet development in proso millet. A, Healthy leaf from a 

mock-inoculated millet plant. B-F, Viral symptoms on millet leaves infected with FoMV 

(B), FoMV/AtFT (C), FoMV/Hd3a (D), FoMV/SFT (E) or FoMV/NtFT4 (F). G, 

RT-PCR detection of virally expressed FT mRNA (upper panel). The sizes of the 

2000-bp DNA marker as well as the positions of FT mRNA and FoMV RNA are 

indicated. The proso millet 18S rRNA was used as internal RT-PCR control (bottom 

panel). H-M, Early flowering and millet spikelet development. Millet plants remained 
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vegetative in mock (H)- or FoMV (I)-inoculated controls. Effective FT expression (G) 

induced early flowering and development of millet spikelet in plants infected with 

FoMV/AtFT (J), FoMV/Hd3a (K), FoMV/SFT (L) or FoMV/NtFT4 (M). Photographs 

were taken at 28 DASS (A-F), or 77 DASS (H-M). The boxed section of each plant was 

enlarged to show clear phenotypes on the top of panels of H-M, respectively. Bar = 

3cm. 

Fig. 4 Analysis of FT-FLAG expression in proso millet. A, RT-PCR assay of FT-FLAG 

mRNA (upper panel). Proso millet 18S rRNA served as internal control (bottom panel). 

B and C, Detection of FT-FLAG proteins using a specific anti-FLAG antibody. Western 

blot (B) and a protein PAGE gel (C) are shown. Total RNAs or proteins were isolated 

from plants mock-inoculated or infected with FoMV, FoMV/AtFT-FLAG, 

FoMV/Hd3a-FLAG, FoMV/SFT-FLAG or FoMV/NtFT4-FLAG. Sizes and positions of 

the 2000-bp DNA ladder or the pre-stained protein marker, positions of viral FT-FLAG 

mRNA, FoMV RNA, 18S rRNA as well as the FT-FLAG fusion proteins are indicated. 

Fig. 5 Foral and spikelet induction by virally expressed FLAG-tagged FT proteins in 

proso millet. Proso millet plants were mock-inoculated (A), or infected with FoMV (B), 

FoMV/AtFT-FLAG (C), FoMV/Hd3a-FLAG (D), FoMV/SFT-FLAG (E) or 

FoMV/NtFT4-FLAG (F). Flowering and spikelet development under LD conditions 

was photographed at 67, 74 and 81 DASS. 

Fig. 6 Expression of rice Hd3a triggers early flowering and grain production in wheat. 

A and B, Development of viral infection in wheat. Wheat with mock inoculation was 

symptomless (A). Infection by FoMV/Hd3a led to development of yellowing and 

chlorosis in wheat leaves (B). C-F, FoMViF in wheat. Wheat plants mock-inoculated 

remained vegetative and showed no sign of reproductive growth (C and E). Plants with 

FoMV/Hd3a infection produced early heading/flowering at 11 weeks after sowing seeds 

(D), and more heads were developed later on (F). Plants were photographed at 28 DASS 

(A and B), 84 DASS (C and D) or 119 DASS (E and F). The boxed section of plants in 

panels C and D was enlarged to show clear phenotypes on the top of each panel, 

respectively. Bar = 3cm. G, Summary of FoMViF in wheat. Flowering time (DASS) is 

represented as Mean±SD. Raw data for the flowering time are shown in Table S4. P 

values generated in equally squared variances/two-tailed Student’s t-test against FoMV 

are shown. P≤0.05 is regarded to have a statistically significant difference. n.a.: not 
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applicable. H, RT-PCR detection of virally expressed Hd3a transcript in wheat. Total 

RNA samples were isolated from plants with mock inoculation (lane 1) or plants 

infected with FoMV/Hd3a (lane 2). The positions of Hd3a mRNA and FoMV RNA as 

well as the 2000-bp DNA marker are indicated (upper panel). Wheat 18S rRNA served 

as internal control (bottom panel). I, Detection of Hd3a-FLAG proteins using a specific 

anti-FLAG antibody. Western blot (upper panel) and a protein PAGE gel (bottom panel) 

are shown (Fig. S6). Total proteins were isolated from wheat plants mock-inoculated or 

infected with FoMV or FoMV/Hd3a-FLAG. Three individual plants (No.1, 2 and 3) 

were used in case of FoMV/Hd3a-FLAG infection. Sizes and positions of the 

pre-stained protein marker as well as positions of the Hd3a-FLAG fusion proteins are 

indicated.  
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