21 research outputs found

    Two softening stages in nanotwinned Cu

    No full text

    MiR-483-5p downregulation alleviates ox-LDL induced endothelial cell injury in atherosclerosis

    No full text
    Abstract Background In light of the abnormal expression of microRNA (miR-483-5p) in patients with atherosclerosis (AS), its role in vascular endothelial cell injury was explored. And the mechanisms related to autophagy were also elucidated. Methods Human umbilical vein endothelial cells (HUVECs) were given 100 mg/L ox-LDL to induce endothelial injury. Cell transfection was done to regulate miR-483-5p levels. Cell viability and apoptosis were detected. qRT-PCR was employed for the mRNA levels’ detection. Results Autophagic flux impairment of HUVECs was detected after ox-LDL treatment, along with the upregulation of miR-483-5p. Ox-LDL inhibited cell viability and promoted cell apoptosis, but these influences were changed by miR-483-5p downregulation. MiR-483-5p downregulation decreased the mRNA levels of IL-1β, IL-6, ICAM-1 and VCAM-1. 3-MA, the autophagy inhibitor, reversed the beneficial role of miR-483-5p downregulation in ox-LDL-induced HUVECs’ injury. TIMP2 acts as a target gene of miR-483-5p, and was downregulated in HUVEC models. Conclusion MiR-483-5p downregulation alleviated ox-LDL-induced endothelial injury via activating autophagy, this might be related to TIMP2

    Self-calibration applied in converting simulation surveying

    No full text

    A Fast and Powerful Empirical Bayes Method for Genome-Wide Association Studies

    No full text
    Linear mixed model (LMM) is an efficient method for GWAS. There are numerous forms of LMM-based GWAS methods. However, improving statistical power and computing efficiency have always been the research hotspots of the LMM-based GWAS methods. Here, we proposed a fast empirical Bayes method, which is based on linear mixed models. We call it Fast-EB-LMM in short. The novelty of this method is that it uses a modified kinship matrix accounting for individual relatedness to avoid competition between the locus of interest and its counterpart in the polygene. This property has increased statistical power. We adopted two special algorithms to ease the computational burden: Eigenvalue decomposition and Woodbury matrix identity. Simulation studies showed that Fast-EB-LMM has significantly increased statistical power of marker detection and improved computational efficiency compared with two widely used GWAS methods, EMMA and EB. Real data analyses for two carcass traits in a Chinese Simmental beef cattle population showed that the significant single-nucleotide polymorphisms (SNPs) and candidate genes identified by Fast-EB-LMM are highly consistent with results of previous studies. We therefore believe that the Fast-EB-LMM method is a reliable and efficient method for GWAS

    Rapid detection of goose astrovirus genotypes 2 using real-time reverse transcription recombinase polymerase amplification

    No full text
    Abstract Background Goose astrovirus (GoAstV) is an important pathogen that causes joint and visceral gout in goslings. It has been circulating in many provinces of China since 2017. Goose astrovirus genotypes 2 (GoAstV-2) is the main epidemic strain, and its high morbidity and mortality have caused huge economic losses to the goose industry. An accurate point-of-care detection for GoAstV-2 is of great significance. In this study, we developed a real-time reverse transcription recombinase polymerase amplification (RT-RPA) method for the on-site detection of GoAstV-2 infection. Results The real-time RT-RPA reaction was carried out at a constant temperature of 39 °C, and the entire detection time from nucleic acid preparation to the end of amplification was only 25 min using the portable device. The results of a specificity analysis showed that no cross-reaction was observed with other related pathogens. The detection limit of the assay was 100 RNA copies/μL. The low coefficient of variation value indicated excellent repeatability. We used 270 clinical samples to evaluate the performance of our established method, the positive concordance rates with RT-qPCR were 99.6%, and the linear regression analysis revealed a strong correlation. Conclusions The established real-time RT-RPA assay showed high rapidity, specificity and sensitivity, which can be widely applied in the laboratory, field and especially in the resource-limited settings for GoAstV-2 point-of-care diagnosis

    Analysis of Wheat Prolamins, the Causative Agents of Celiac Sprue, Using Reversed Phase High Performance Liquid Chromatography (RP-HPLC) and Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS)

    No full text
    Wheat prolamins, commonly known as “gluten”, are a complex mixture of 71–78 proteins, which constitute ~80% of the proteins in the wheat grains and supply 50% of the global dietary protein demand. Prolamins are also responsible for numerous gluten-induced disorders and determine the unique visco-elastic properties of the wheat dough. These properties necessitate the reliable determination of the prolamin composition in wheat grains and their derived products. Therefore, this study examined the impact of HPLC conditions, including column type, column temperature, flow rate, and the gradient of polar and non-polar solvents in the mobile phase, to improve the analytical resolution of prolamins. The following conditions were found optimal for analyses: column temperature 60 °C, flow rate 1.0 mL/min and an elution gradient of 20%–60% of 0.1% trifluoroacetic acid + acetonitrile in 60 min. For further improvement of resolution, gliadin and glutenin extracts were analyzed using MALDI-TOF-MS in combination with HPLC fractionation. Two semi-quantitative methods, densitometry of stained polyacrylamide gels and HPLC, were used to determine relative prolamin quantities and the correspondence between the methods was established. The combinatorial gluten analyses approach developed during the present study was used to analyze prolamin profiles of wheat transformants expressing DEMETER silencing artificial microRNA, and the results are discussed
    corecore