112 research outputs found

    Leaf transcriptome analysis of a subtropical evergreen broadleaf plant, wild oil-tea camellia (Camellia oleifera), revealing candidate genes for cold acclimation

    Get PDF
    Single nucleotide polymorphism (SNP) positions in genes of Camellia oleifera. Genotypes of samples from Jinggang (JG01-04) and Lu (LS01-04) mountains are shown. (XLSX 8324 kb

    Narrowing the Agronomic Yield Gaps of Maize by Improved Soil, Cultivar, and Agricultural Management Practices in Different Climate Zones of Northeast China

    Get PDF
    Citation: Liu, Z. J., Yang, X. G., Lin, X. M., Hubbard, K. G., Lv, S., & Wang, J. (2016). Narrowing the Agronomic Yield Gaps of Maize by Improved Soil, Cultivar, and Agricultural Management Practices in Different Climate Zones of Northeast China. Earth Interactions, 20, 18. doi:10.1175/ei-d-15-0032.1Northeast China (NEC) is one of the major agricultural production areas in China, producing about 30% of China's total maize output. In the past five decades, maize yields in NEC increased rapidly. However, farmer yields still have potential to be increased. Therefore, it is important to quantify the impacts of agronomic factors, including soil physical properties, cultivar selections, and management practices on yield gaps of maize under the changing climate in NEC in order to provide reliable recommendations to narrow down the yield gaps. In this study, the Agricultural Production Systems Simulator (APSIM)-Maize model was used to separate the contributions of soil physical properties, cultivar selections, and management practices to maize yield gaps. The results indicate that approximately 5%, 12%, and 18% of potential yield loss of maize is attributable to soil physical properties, cultivar selection, and management practices. Simulation analyses showed that potential ascensions of yield of maize by improving soil physical properties PAY(s), changing to cultivar with longer maturity PAY(c), and improving management practices PAY(m) for the entire region were 0.6, 1.5, and 2.2 ton ha(-1) or 9%, 23%, and 34% increases, respectively, in NEC. In addition, PAY(c) and PAY(m) varied considerably from location to location (0.4 to 2.2 and 0.9 to 4.5 ton ha(-1) respectively), which may be associated with the spatial variation of growing season temperature and precipitation among climate zones in NEC. Therefore, changing to cultivars with longer growing season requirement and improving management practices are the top strategies for improving yield of maize in NEC, especially for the north and west areas

    Reference Gene Selection for qRT-PCR Analysis in the Sweetpotato Whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae)

    Get PDF
    BACKGROUND: Accurate evaluation of gene expression requires normalization relative to the expression of reliable reference genes. Expression levels of classical reference genes can differ, however, across experimental conditions. Although quantitative real-time PCR (qRT-PCR) has been used extensively to decipher gene function in the sweetpotato whitefly Bemisia tabaci, a world-wide pest in many agricultural systems, the stability of its reference genes has rarely been validated. RESULTS: In this study, 15 candidate reference genes from B. tabaci were evaluated using two Excel-based algorithms geNorm and Normfinder under a diverse set of biotic and abiotic conditions. At least two reference genes were selected to normalize gene expressions in B. tabaci under experimental conditions. Specifically, for biotic conditions including host plant, acquisition of a plant virus, developmental stage, tissue (body region of the adult), and whitefly biotype, ribosomal protein L29 was the most stable reference gene. In contrast, the expression of elongation factor 1 alpha, peptidylprolyl isomerase A, NADH dehydrogenase, succinate dehydrogenase complex subunit A and heat shock protein 40 were consistently stable across various abiotic conditions including photoperiod, temperature, and insecticide susceptibility. CONCLUSION: Our finding is the first step toward establishing a standardized quantitative real-time PCR procedure following the MIQE (Minimum Information for publication of Quantitative real time PCR Experiments) guideline in an agriculturally important insect pest, and provides a solid foundation for future RNA interference based functional study in B. tabaci

    Construction of an immune-related ceRNA network in cervical cancer based on HPV E6 splicing

    Get PDF
    BackgroundCervical cancer is one of the leading causes of cancer-related deaths worldwide. The unspliced human papillomavirus (HPV) E6 plays an important role in tumor progression and immune regulation. Improved immunotherapy implementation might benefit from a better knowledge of HPV E6 splicing-related immune gene expressions and immunocyte infiltration in cervical cancer. This study aimed to identify the potential therapeutic and prognostic roles of unspliced/spliced E6 ratio (E6 ratio) in cervical cancer.MethodsData from the TCGA were used to analyze the E6 condition and clinical information. Nomogram and K-M analysis were used to analyze assess the prognostic significance, IOBR was used to investigate immunological infiltrates. Functions and pathway enrichment analysis of DEGs were investigated through GO analysis and KEGG pathway analysis, respectively. A core module was taken from the competitive endogenous RNA (ceRNA) network and used to build a lncRNA-miRNA-mRNA network. QT-qPCR was used to detect the expression of genes. CCK-8, colony formation, wound healing and migration assays were used to detect cell functions.ResultsOur study found that HPV E6 ratio had significantly correlation with overall survival. In cervical cancer, a high E6 ratio was adversely linked with infiltrating levels of aDC, M1 macrophages, monocytes, NKT, and Tgd. High E6 ratio phenotypes were shown to be implicated in immune response regulation, cell adhesion, and Wnt signaling pathways, according to functional enrichment analysis. Subsequently, we constructed an immune-related ceRNA network based on E6 splicing in cervical cancer, including three lncRNA (LINC00943, LIFR-AS1, DANT2, and RASSF8-AS1), four miRNA (miR-205-5p, miR-181d-5p, miR-222-3p, and miR-221-3p), and seven mRNA (FGFR1, PRLR, CXCL2, ISG20, ISG15, SDC1, and NR2F2). Among them, CXCL2, SDC1, and miR-221-3p were associated with survival and immune cell infiltration.ConclusionsThese data imply that a high E6 ratio in cervical cancer contributes to the immune-related ceRNA network, resulting in a low amount of infiltrating effector immune cells and tumor growth. As a result, the E6 ratio might be employed as a biomarker in cervical cancer to determine prognosis and treatment success

    Alterations to the Lung Microbiome in Idiopathic Pulmonary Fibrosis Patients

    Get PDF
    Lung microbiome ecosystem homeostasis in idiopathic pulmonary fibrosis (IPF) remains uncharacterized. The aims of this study were to identify unique microbial signatures of the lung microbiome and analyze microbial gene function in IPF patients. DNA isolated from BALF samples was obtained for high-throughput gene sequencing. Microbial metagenomic data were used for principal component analysis (PCA) and analyzed at different taxonomic levels. Shotgun metagenomic data were annotated using the KEGG database and were analyzed for functional and metabolic pathways. In this study, 17 IPF patients and 38 healthy subjects (smokers and non-smokers) were recruited. For the PCA, the first and the second principal component explained 16.3 and 13.4% of the overall variability, respectively. The β diversity of microbiome was reduced in the IPF group. Signature of IPF's microbes was enriched of Streptococcus, Pseudobutyrivibrio, and Anaerorhabdus. The translocation of lung microbiome was shown that 32.84% of them were from oral. After analysis of gene function, ABC transporter systems, biofilm formation, and two-component regulatory system were enriched in IPF patients' microbiome. Here we shown the microbiology characteristics in IPF patients. The microbiome may participate in altering internal conditions and involving in generating antibiotic resistance in IPF patients

    MAPK-activated transcription factor PxJun suppresses PxABCB1 expression and confers resistance to Bacillus thuringiensis Cry1Ac toxin in Plutella xylostella (L.)

    Get PDF
    Deciphering the molecular mechanisms underlying insect resistance to Cry toxins produced by Bacillus thuringiensis (Bt) is pivotal for the sustainable utilization of Bt biopesticides and transgenic Bt crops. Previously, we identified that MAPK-mediated reduced expression of the PxABCB1 gene is associated with Bt Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.). However, the underlying transcriptional regulation mechanism remains enigmatic. Herein, the PxABCB1 promoter in Cry1Ac-susceptible and Cry1Ac-resistant P. xylostella strains was cloned and analyzed and found to contain a putative Jun binding site (JBS). A dual-luciferase reporter assay and yeast one-hybrid assay (Y1H) demonstrated that the transcription factor PxJun repressed PxABCB1 expression by interacting with this JBS. The expression levels of PxJun were increased in the midguts of all resistant strains compared to the susceptible strain. Silencing of PxJun expression significantly elevated PxABCB1 expression and Cry1Ac susceptibility in the resistant NIL-R strain, and silencing of PxMAP4K4 expression decreased PxJun expression and also increased PxABCB1 expression. These results indicate that MAPK-activated PxJun suppresses PxABCB1 expression to confer Cry1Ac resistance in P. xylostella, deepening our understanding of the transcriptional regulation of midgut Cry receptor genes and the molecular basis of insect resistance to Bt Cry toxins.ImportanceThe transcriptional regulation mechanisms underlying reduced expression of Bt toxin receptor genes in Bt-resistant insects remain elusive. This study unveils that a transcription factor PxJun activated by the MAPK signaling pathway represses PxABCB1 expression and confers Cry1Ac resistance in P. xylostella Our results provide new insights into the transcriptional regulation mechanisms of midgut Cry receptor genes and deepen our understanding of the molecular basis of insect resistance to Bt Cry toxins. To our knowledge, this study identified the first transcription factor that can be involved in the transcriptional regulation mechanisms of midgut Cry receptor genes in Bt-resistant insects

    Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa

    Get PDF
    Background The Multinational Brassica rapa Genome Sequencing Project (BrGSP) has developed valuable genomic resources, including BAC libraries, BAC-end sequences, genetic and physical maps, and seed BAC sequences for Brassica rapa. An integrated linkage map between the amphidiploid B. napus and diploid B. rapa will facilitate the rapid transfer of these valuable resources from B. rapa to B. napus (Oilseed rape, Canola). Results In this study, we identified over 23,000 simple sequence repeats (SSRs) from 536 sequenced BACs. 890 SSR markers (designated as BrGMS) were developed and used for the construction of an integrated linkage map for the A genome in B. rapa and B. napus. Two hundred and nineteen BrGMS markers were integrated to an existing B. napus linkage map (BnaNZDH). Among these mapped BrGMS markers, 168 were only distributed on the A genome linkage groups (LGs), 18 distrubuted both on the A and C genome LGs, and 33 only distributed on the C genome LGs. Most of the A genome LGs in B. napus were collinear with the homoeologous LGs in B. rapa, although minor inversions or rearrangements occurred on A2 and A9. The mapping of these BAC-specific SSR markers enabled assignment of 161 sequenced B. rapa BACs, as well as the associated BAC contigs to the A genome LGs of B. napus. Conclusion The genetic mapping of SSR markers derived from sequenced BACs in B. rapa enabled direct links to be established between the B. napus linkage map and a B. rapa physical map, and thus the assignment of B. rapa BACs and the associated BAC contigs to the B. napus linkage map. This integrated genetic linkage map will facilitate exploitation of the B. rapa annotated genomic resources for gene tagging and map-based cloning in B. napus, and for comparative analysis of the A genome within Brassica species

    Oxidative performance and surface properties of Co-containing mixed oxides having the K2NiF4 structure

    No full text
    The complexed oxides Nd2xSrxCoO4 (0.4 0.8, the lattice distortion decreased with increasing x. The results of O2TPD showed that amount of desorption of lattice oxygen over Nd2xSrxCoO4 increased with x, however, the amount of chemidesorption of oxygen decreased. With increasing x, the high-temperature reduction peak in H2TPR of Nd2xSrxCoO4 shifted to higher temperatures, however, the low-temperature reduction peak shifted to lower temperatures, which showed that the activity of the lattice oxygen and the thermal stability of Nd2xSrxCoO4 increased with increasing x
    corecore