41 research outputs found

    Identification of the Germline Mutation Profile in Esophageal Squamous Cell Carcinoma by Whole Exome Sequencing

    Get PDF
    Background: Esophageal squamous cell carcinoma (ESCC) is associated with poor prognosis and occurs with high frequency in China. The germline mutation profile in ESCC remains unclear, and therefore, the discovery of oncogenic alterations in ESCC is urgently needed. This study investigates the germline mutation profile and reveals associations among genotype-environment interactions in ESCC.Methods: Whole exome sequencing and follow-up analysis were performed in 77 matched tumor-normal ESCC specimens to examine the germline profiles. Additionally, associations among genotype-environment interactions were investigated.Results: We identified 84 pathogenic/likely pathogenic mutations and 51 rare variants of uncertain significance (VUS). Twenty VUS with InterVar evidence of a score of moderate pathogenicity (PM) 2/PM2+ supporting pathogenicity (PP) 1 were found to have pathogenic significance. CYP21A2 was the most frequently mutated gene, and the p.Gln319* variant was identified in 6.5% (5/77) of patients. The TP53 p.V197E mutation, located within the DNA binding domain, was found in 1.3% (1/77) of patients. In total, the 11.7% (9/77) of individuals with homologous recombination (HR) VUS were more likely to have well-differentiated tumors than those without (P = 0.003). The degree of lymph node metastasis was correlated with homologous recombination deficiency (HRD) and VUS group (P < 0.05). Moreover, the 10.4% (8/77) of individuals with mismatch repair (MMR) VUS had a higher tumor mutational burden (TMB), although the correlation was not significant.Conclusions: Our study identified the germline mutation profiles in ESCC, providing novel insights into the molecular pathogenesis of this disease. Our results may also serve as a useful resource for the exploration of the underlying mechanism of ESCC and may provide information for the prevention, diagnosis and risk management of ESCC

    Reduced binding activity of vaccine serum to omicron receptor-binding domain

    Get PDF
    Coronavirus disease 2019 (COVID-19) vaccination regimens contribute to limiting the spread of severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2). However, the emergence and rapid transmission of the SARS-CoV-2 variant Omicron raise a concern about the efficacy of the current vaccination strategy. Here, we expressed monomeric and dimeric receptor-binding domains (RBDs) of the spike protein of prototype SARS-CoV-2 and Omicron variant in E. coli and investigated the reactivity of anti-sera from Chinese subjects immunized with SARS-CoV-2 vaccines to these recombinant RBDs. In 106 human blood samples collected from 91 participants from Jiangxi, China, 26 sera were identified to be positive for SARS-CoV-2 spike protein antibodies by lateral flow dipstick (LFD) assays, which were enriched in the ones collected from day 7 to 1 month post-boost (87.0%) compared to those harvested within 1 week post-boost (23.8%) (P < 0.0001). A higher positive ratio was observed in the child group (40.8%) than adults (13.6%) (P = 0.0073). ELISA results showed that the binding activity of anti-SARS-CoV-2 antibody-positive sera to Omicron RBDs dropped by 1.48- to 2.07-fold compared to its homogeneous recombinant RBDs. Thus, our data indicate that current SARS-CoV-2 vaccines provide restricted humoral protection against the Omicron variant

    How Can the European Federation for Colposcopy Promote High Quality Colposcopy Throughout Europe?

    Get PDF
    Since its inception in 1998, the European Federation for Colposcopy (EFC) now comprises 26 member societies. Its principle aim is to promote high quality colposcopy throughout Europe with special emphasis on training, education and treatment. This review summarises EFC’s activities and achievements to date

    Cross-species comparison of aCGH data from mouse and human BRCA1- and BRCA2-mutated breast cancers

    Get PDF
    Background: Genomic gains and losses are a result of genomic instability in many types of cancers. BRCA1- and BRCA2-mutated breast cancers are associated with increased amounts of chromosomal aberrations, presumably due their functions in genome repair. Some of these genomic aberrations may harbor genes whose absence or overexpression may give rise to cellular growth advantage. So far, it has not been easy to identify the driver genes underlying gains and losses. A powerful approach to identify these driver genes could be a cross-species comparison of array comparative genomic hybridization (aCGH) data from cognate mouse and human tumors. Orthologous regions of mouse and human tumors that are commonly gained or lost might represent essential genomic regions selected for gain or loss during tumor development. Methods: To identify genomic regions that are associated with BRCA1- and BRCA2-mutated breast cancers we compared aCGH data from 130 mouse Brca1?/?;p53?/?, Brca2?/?;p53?/? and p53?/? mammary tumor groups with 103 human BRCA1-mutated, BRCA2-mutated and non-hereditary breast cancers. Results: Our genome-wide cross-species analysis yielded a complete collection of loci and genes that are commonly gained or lost in mouse and human breast cancer. Principal common CNAs were the well known MYCassociated gain and RB1/INTS6-associated loss that occurred in all mouse and human tumor groups, and the AURKA-associated gain occurred in BRCA2-related tumors from both species. However, there were also important differences between tumor profiles of both species, such as the prominent gain on chromosome 10 in mouse Brca2?/?;p53?/? tumors and the PIK3CA associated 3q gain in human BRCA1-mutated tumors, which occurred in tumors from one species but not in tumors from the other species. This disparity in recurrent aberrations in mouse and human tumors might be due to differences in tumor cell type or genomic organization between both species. Conclusions: The selection of the oncogenome during mouse and human breast tumor development is markedly different, apart from the MYC gain and RB1-associated loss. These differences should be kept in mind when using mouse models for preclinical studies.MediamaticsElectrical Engineering, Mathematics and Computer Scienc

    Distinct DNA methylation epigenotypes in bladder cancer from different Chinese sub-populations and its implication in cancer detection using voided urine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bladder cancer is the sixth most common cancer in the world and the incidence is particularly high in southwestern Taiwan. Previous studies have identified several tumor-related genes that are hypermethylated in bladder cancer; however the DNA methylation profile of bladder cancer in Taiwan is not fully understood.</p> <p>Methods</p> <p>In this study, we compared the DNA methylation profile of multiple tumor suppressor genes (<it>APC</it>, <it>DAPK</it>, <it>E-cadherin</it>, <it>hMLH1</it>, <it>IRF8</it>, <it>p14</it>, <it>p15</it>, <it>RASSF1A</it>, <it>SFRP1 </it>and <it>SOCS-1</it>) in bladder cancer patients from different Chinese sub-populations including Taiwan (104 cases), Hong Kong (82 cases) and China (24 cases) by MSP. Two normal human urothelium were also included as control. To investigate the diagnostic potential of using DNA methylation in non-invasive detection of bladder cancer, degree of methylation of <it>DAPK</it>, <it>IRF8</it>, <it>p14</it>, <it>RASSF1A </it>and <it>SFRP1 </it>was also accessed by quantitative MSP in urine samples from thirty bladder cancer patients and nineteen non-cancer controls.</p> <p>Results</p> <p>There were distinct DNA methylation epigenotypes among the different sub-populations. Further, samples from Taiwan and China demonstrated a bimodal distribution suggesting that CpG island methylator phentotype (CIMP) is presented in bladder cancer. Moreover, the number of methylated genes in samples from Taiwan and Hong Kong were significantly correlated with histological grade (P < 0.01) and pathological stage (P < 0.01). Regarding the samples from Taiwan, methylation of <it>SFRP1</it>, <it>IRF8</it>, <it>APC </it>and <it>RASSF1A </it>were significantly associated with increased tumor grade, stage. Methylation of <it>RASSF1A </it>was associated with tumor recurrence. Patients with methylation of <it>APC </it>or <it>RASSF1A </it>were also significantly associated with shorter recurrence-free survival. For methylation detection in voided urine samples of cancer patients, the sensitivity and specificity of using any of the methylated genes (<it>IRF8</it>, <it>p14 </it>or <it>sFRP1</it>) by qMSP was 86.7% and 94.7%.</p> <p>Conclusions</p> <p>Our results indicate that there are distinct methylation epigenotypes among different Chinese sub-populations. These profiles demonstrate gradual increases with cancer progression. Finally, detection of gene methylation in voided urine with these distinct DNA methylation markers is more sensitive than urine cytology.</p

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Aging and biliary tract cancers: Epidemiology, molecular biology, and clinical practice

    No full text
    Abstract Biliary tract cancer (BTC) that contains cholangiocarcinoma, gallbladder cancer, and ampullary cancer is highly malignant and mostly diagnosed in elderly patients. Over the past decades, human life has globally risen; thus, aging emerges as the primary risk factor for BTC. However, an effective treatment for this vulnerable population remains a large clinical challenge. As a result, the incidence and mortality of TBC remains high. Here, we discuss the potential link between aging and BTC from the aspects of molecular and cellular mechanisms, surgical resection, and chemotherapy. In addition, we update a number of clinical trials that are currently ongoing in elderly patients. The overview of BTC in elderly patients is expected to help develop a new therapeutic strategy tailored to this elderly population, ultimately improving their life quality

    Alteration in methylation level at differential methylated regions of MEST and DLK1 in fetus of preeclampsia

    No full text
    Objectives: Offspring born to preeclamptic women are at high risk for metabolic diseases in later life, but the mechanisms are not known. The purposes of the current investigation were to clarify the changes in DNA methylation at MEST and DLK1 DMRs in fetus of preeclampsia and to explore the possible mechanisms behind the high risk of adult diseases in the offspring of preeclampsia. Methods: Fetal lymphocytes were isolated from umbilical cord blood of 78 women with preeclampsia and 95 women with normal pregnancy. Genomic DNA was extracted and then DNA methylation levels of MEST and DLK1 DMRs were determined by MassARRAY quantitative methylation analysis. Results: The methylation levels were detected in 20 CpG sites of MEST DMR and 16 sites of DLK1 DMR. Methylation changes were significantly different at CPG1, 3, 4, 7.8, 15, 18.19, and 20 of MEST between preeclampsia and normal pregnancy (P = 0.014, 0.001, <0.001, <0.001, = 0.001,  = 0.005, and = 0.003, respectively). Significant differences were also observed at CPG 3 and 9 of DLK1 (P = 0.002 and 0.027, respectively). However, overall methylation at these DMRs were not affected. Conclusion: We conclude methylation changes at some CpG sites of MEST and DLK DMRs in preeclamptic group. This may be among the mechanisms behind the high risk of adult diseases in the later life of offspring born to preeclamptic pregnancies. Abbreviations: DMR: Differentially Methylated Region; MEST: Mesoderm Specific Transcrip

    A Reliability System Evaluation Model of NoC Communication with Crosstalk Analysis from Backend to Frontend

    No full text
    Network on chip (NoC) is the main solution to the communication bandwidth of a multi-processor system on chip (MPSoC). NoC also brings more route requirements and is highly prone to errors caused by crosstalk. Crosstalk has become a major design problem in deep-submicron NoC communication design. Hence, a crosstalk error model and corresponding reliable system with error correction code (ECC) are required to make NoC communication reliable. In this paper, a reliability system evaluation model (RSE) of NoC communication with analysis from backend to frontend has been proposed. In the backend, a crosstalk error rate model (CER) is established with a three-wire RLC coupling model and timing constraints. The CER is used to establish functional relations between interconnect spacing, length and signal frequency, and test system reliability. In the frontend, a reliability system performance model (RSP) is established with a CER, reliability method cost and bandwidth. The RSE summarizes the frontend and backend model. In order to verify the RSE model, we propose a reliability system with a hybrid automatic repeat request technique (RSHARQ). Simulation demonstrates that the CER model is close to real circuit design. Through the CER and RSP model, the performance of RSHARQ could be simulated
    corecore