1,264 research outputs found

    A continuum model for the dynamics of the phase transition from slow-wave sleep to REM sleep

    Get PDF
    Previous studies have shown that activated cortical states (awake and rapid eye-movement (REM) sleep), are associated with increased cholinergic input into the cerebral cortex. However, the mechanisms that underlie the detailed dynamics of the cortical transition from slow-wave to REM sleep have not been quantitatively modeled. How does the sequence of abrupt changes in the cortical dynamics (as detected in the electrocorticogram) result from the more gradual change in subcortical cholinergic input? We compare the output from a continuum model of cortical neuronal dynamics with experimentally-derived rat electrocorticogram data. The output from the computer model was consistent with experimental observations. In slow-wave sleep, 0.5–2-Hz oscillations arise from the cortex jumping between “up” and “down” states on the stationary-state manifold. As cholinergic input increases, the upper state undergoes a bifurcation to an 8-Hz oscillation. The coexistence of both oscillations is similar to that found in the intermediate stage of sleep of the rat. Further cholinergic input moves the trajectory to a point where the lower part of the manifold in not available, and thus the slow oscillation abruptly ceases (REM sleep). The model provides a natural basis to explain neuromodulator-induced changes in cortical activity, and indicates that a cortical phase change, rather than a brainstem “flip-flop”, may describe the transition from slow-wave sleep to REM

    Structural Relationship between Negative Thermal Expansion and Quartic Anharmonicity of Cubic ScF_3

    Get PDF
    Cubic scandium trifluoride (ScF_3) has a large negative thermal expansion over a wide range of temperatures. Inelastic neutron scattering experiments were performed to study the temperature dependence of the lattice dynamics of ScF3 from 7 to 750 K. The measured phonon densities of states show a large anharmonic contribution with a thermal stiffening of modes around 25 meV. Phonon calculations with first-principles methods identified the individual modes in the densities of states, and frozen phonon calculations showed that some of the modes with motions of F atoms transverse to their bond direction behave as quantum quartic oscillators. The quartic potential originates from harmonic interatomic forces in the DO_9 structure of ScF_3, and accounts for phonon stiffening with the temperature and a significant part of the negative thermal expansion

    Advanced Silicon Avalanche Photodiodes on NASA's Global Ecosystem Dynamics Investigation (GEDI) Mission

    Get PDF
    Silicon Avalanche Photodiodes (APDs) are used in NASAs Global Ecosystem Dynamics Investigation (GEDI) which was launched in December 2018 and is currently measuring the Earths vegetation vertical structure from the International Space Station. The APDs were specially made for space lidar with a much lower hole-to-electron ionization coefficient ratio (k-factor ~0.008) than that of commercially available silicon APDs in order to reduce the APD excess noise from the randomness of the avalanche gain. A silicon heater resistor was used under the APD chip to heat the device up to 70C and improve its quantum efficiency at 1064 nm laser wavelength while maintaining a low dark current such that the overall signal to noise ratio is improved. Special APD protection circuits were used to raise the overload damage threshold to prevent device damage from strong laser return by specular surfaces, such as still water bodies, and space radiation events. The APD and a hybrid transimpedance amplifier circuit were hermetically sealed in a package with a sufficiently low leak rate to ensure multi-year operation lifetime in space. The detector assemblies underwent a series of pre-launch tests per NASA Goddard Environmental Verification Standard for space qualification. They have performed exactly as expected with GEDI in orbit. A detailed description of the GEDI detector design, signal and noise model, and test results are presented in this paper

    Volatility Spillover and Time-Varying Conditional Correlation Between DDGS, Corn, and Soybean Meal Markets

    Get PDF
    We find distiller\u27s dried grains with solubles (DDGS) prices to be positively correlated with both corn and soybean meal prices in the long run. However, neither corn nor soybean meal prices respond to deviations from this long-run relationship. We also identify strong time-varying dynamic conditional correlations between the markets, with the correlation between DDGS and corn strengthened after the expansion of ethanol production. There also appear to exist significant volatility spillovers from both the corn and soybean meal markets to the DDGS market, with the impact from corn shocks much larger compared to soybean meal shocks

    Translocation of Non-Canonical Polypeptides into Cells Using Protective Antigen

    Get PDF
    A variety of pathogenic bacteria infect host eukaryotic cells using protein toxins, which enter the cytosol and exert their cytotoxic effects. Anthrax lethal toxin, for example, utilizes the membrane-spanning translocase, protective antigen (PA) pore, to deliver the protein toxin lethal factor (LF) from the endosome into the cytosol of cells. Previous work has investigated the delivery of natural peptides and enzymatic domains appended to the C-terminus of the PA-binding domain of lethal factor (LF[subscript N]) into the cytosol via PA pore. Here, we move beyond natural amino acids and systematically investigate the translocation of polypeptide cargo containing non-canonical amino acids and functionalities through PA pore. Our results indicate translocation is not perturbed with alterations to the peptide backbone or side-chain. Moreover, despite their structural complexity, we found that the small molecule drugs, doxorubicin and monomethyl auristatin F (MMAF) translocated efficiently through PA pore. However, we found cyclic peptides and the small molecule drug docetaxel abrogated translocation due to their large size and structural rigidity. For cargos that reached the cytosol, we demonstrated that each remained intact after translocation. These studies show PA is capable of translocating non-canonical cargo provided it is in a conformational state conducive for passage through the narrow pore.MIT Start-up FundsMassachusetts Institute of Technology. Charles E. Reed Faculty Initiative FundDamon Runyon Cancer Research Foundation (Innovation Award)National Science Foundation (U.S.) (CAREER Award CHE-1351807)National Science Foundation (U.S.). Graduate Research Fellowshi

    Planetary Gearbox Fault Diagnosis Using an On-Rotor MEMS Accelerometer

    Get PDF
    Conventional accelerometers installed on housing often give out less accurate diagnostic results for planetary gearbox because the mesh excitation of planet gears change with carrier movement. Recent significant advancements in low-power and low-cost Micro-Electro-Mechanical Systems (MEMS) technologies make it possible and easier to mount MEMS accelerometers directly on the rotating shaft, enabling more accurate dynamic characteristics of the rotating machine to be acquired and used for condition monitoring. In this paper, two tiny MEMS accelerometers are installed diametrically opposite each other on the lowspeed input shaft of a planetary gearbox to measure the acceleration signals. The acceleration signals sensed by each MEMS will contain both the tangential acceleration and gravitational acceleration, but the latter can be removed by summing the acceleration signals from both sensors in order to characterise the rotor dynamics precisely. The experimental results show that the tangential acceleration measured on the low-speed input shaft of a planetary gearbox can clearly indicate faults, thus providing a reliable and lowcost method for planetary gearbox condition monitoring

    Performance of the GLAS Space Lidar Receiver Through Its Seven-Year Space Mission

    Get PDF
    NASA s Ice, Cloud, and land Elevation Satellite (ICESat) mission [1,2] carrying the Geoscience Laser Altimeter System (GLAS) Instrument, was launched on January 12, 2003. The three lasers on ICESat have made a total of 1.98 billion laser shot measurements of the Earth s surface and atmosphere during its 17 science data collection campaigns over its seven year operating lifetime. ICESat completed its science mission after the last laser stopped operating in October 2009. The spacecraft was de-orbited on August 30, 2010. The GLAS instrument carried 3 diode-pumped Q-switched Nd:YAG lasers, which emitted 6-nsec wide pulses at 1064 and 532 nm at a 40-Hz rate. There are three lidar receiver channels, a 1064 nm surface altimetry channel, a 1064 nm cloud backscattering lidar channel, and a 532 nm cloud and aerosol backscattering lidar channel. The altimetry and cloud backscatter channels used Si avalanche photodiode (APD) operated in analog mode as in the Mars Global Surveyor s Mars Orbital Laser Altimeter [3,4]. GLAS also utilized a number of new technologies and techniques for space lidar, including passively Q-switched diode-pumped Nd:YAG lasers, a 1-m diameter telescope, a temperature tuned etalon optical bandpass filter, Si APD single photon counting detectors, 1 Gsample/sec waveform digitizers, ultra stable clock oscillators, and digital signal processing and detection algorithms [5]. A global position system (GPS) receiver was used to provide the spacecraft position and epoch times. The ICESat mission provided a unique opportunity to monitor the lidar component performance in the space environment over a multi-year time period. We performed a number of engineering tests periodically to monitor the lidar receiver performance, including receiver sensitivity, timing precision, detector dark noise, etc. A series of engineering tests were also performed after the end of the science mission to evaluate the performance of the spare detector, oscillator, waveform digitizer, and GPS receiver. An experiment was conducted which pointed GLAS to Venus to test the receiver sensitivity to star light and to verify GLAS bore sight with respect to the spacecraft coordinate system. These tests provided unique data to assess the degradation and the rate of change of these key lidar components due to space radiation and aging. They also helped to validate new techniques to operate and calibrate future space lidars
    corecore