34 research outputs found

    Translation initiation factor 4E binding protein 1,2 (4E-BP1,2) in hematopoiesis and stress erythropoiesis

    Get PDF
    Das Eukaryotische-Initiations faktor-4E Bindungsprotein (4E-BP) ist ein Inhibitor der Translationsinitiation. Nicht-phosphoryliertes 4E-BP bindet an den eukaryotischen Initiationsfaktor 4E (eIF4E). Diese Bindung blockiert die Rekrutierung des Initiationskomplexes eIF4F an die Cap-Struktur des 5´Endes von eukaryotischen zellulären mRNAs, was die Initiation der Translation verhindert. Phosphorylierung von 4E-BP durch die mTOR Kinase führt zur Dissoziation des 4E-BP/eIF4E Komplexes und erhöht die Verfügbarkeit von eIF4E, dies wird mit Zellproliferation assoziiert. Die Aktivität von eIF4E wird nicht nur von 4E-BP, sondern auch durch Phosporylierung reguliert, welche wiederum durch die "MAP-Kinase-Interacting-Protein-Kinase" (MNK) reguliert wird. Drei Isoformen von 4E-BP sind bekannt: 4E-BP1, 4E-BP2 and 4E-BP3. 4E-BP1 und 4E-BP2 sind an oxidativem und adipogenetischen Stress beteiligt. Beide Proteine werden im h?matopoetischen System gleich exprimiert, wohingegen 4E-BP3 nicht detektiert wird. 4E-BP1 wird während der Erythroblasten-Proliferation phosphoryliert. Aus diesem Grund habe ich die Hämatopoese und die durch Phenylhydrazine (PHZ) induzierte Stress-Erythropoese in 4E-BP1 und 4E-BP2 Knock-Out Mäusen und 4E-BP1,2 Doppel-Knock-Out Mäusen analysiert. Ich konnte zeigen, dass die Hämatopoese in 4E-BPs defizienten Mäusen nicht beeinflusst wird. Allerdings zeigten 4E-BP1,2-/- und 4E-BP2-/- Mäuse eine verspätete Antwort auf Phenylhydrazin (PHZ) induzierten erythropoetischen Stress. Gleichzeitig war die mRNA Translation von GATA-1, ein essentieller erythropoetischer Transkriptionsfaktor in Erythroblasten runterreguliert. Die Signaltransduktionswege mTOR und MNK1 waren bei erythropoetischen Stress aktiviert. Diese Daten zeigen, dass 4E-BP2, aber nicht 4E-BP1, notwendig ist um auf erythropoetischen Stress zu reagieren und deuten an, dass die 4E-BP gesteuerte translations-regulierende Maschinerie eine Rolle in der Stress-Erythropoese spielt.Translational regulation allows an organism to generate fast responses to environmental changes quickly. Eukaryotic initiation factor 4E binding protein (4E-BP) is an inhibitor of translation initiation. Unphosphorylated 4E-BP binds to eukaryotic initiation factor 4E (eIF4E) blocking recruitment of the initiation complex eIF4F to the cap structure at the 5´ terminus of eukaryotic cellular mRNAs. Thus initiation of translation is blocked. Phosphorylation of 4E-BP by the mTOR kinase causes disassociation of the 4E-BP/eIF4E complex and increases the availability of eIF4E. EIF4E activity is not only regulated by 4E-BP, but also phosphorylation which is regulated by MAP kinase - interacting protein kinase (MNK). Three isoforms of 4E-BP are known, termed 4E-BP1, 4E-BP2 and 4E-BP3. 4E-BP1 and 4E-BP2 are involved in oxidative and adipogenetic stresses in vivo. They are equally expressed in hematopoietic system, whereas 4E-BP3 is not detected. 4E-BP1 is phosphorylated during erythroblast proliferation. Erythroid differentiation is blocked by overexpresssion of eIF4E in tissue culture. These studies implied that 4E-BPs might play role in response to erythropoietic stress. I examined hematopoiesis and phenylhydrazine (PHZ) induced stress erythropoiesis in 4E-BP1 and 4E-BP2 individual knock out mice and 4E-BP1,2 compound knock out mice. I found that the hematopoiesis of 4E-BPs deficient mice were unaffected. However, 4E-BP1,2-/- and 4E-BP2-/- mice showed delayed response to phenylhydrazine (PHZ) induced erythropoietic stress. Simultaneously, the mRNA translation of GATA-1, which is the essential erythroid transcription factor, was downregulated in their erythroblasts. The signaling pathways through the mTOR and MNK1 were activated in erythropoietic stress. These data showed that 4E-BP2 but not 4E-BP1 was required for the response to erythropoietic stress and suggested that 4E-BP related translation regulatory machinery played a role in stress erythropoiesis

    IL-35 Is a Novel Responsive Anti-inflammatory Cytokine — A New System of Categorizing Anti-inflammatory Cytokines

    Get PDF
    It remains unknown whether newly identified anti-inflammatory/immunosuppressive cytokine interleukin-35 (IL-35) is different from other anti-inflammatory cytokines such as IL-10 and transforming growth factor (TGF)-β in terms of inhibition of inflammation initiation and suppression of full-blown inflammation. Using experimental database mining and statistical analysis methods we developed, we examined the tissue expression profiles and regulatory mechanisms of IL-35 in comparison to other anti-inflammatory cytokines. Our results suggest that in contrast to TGF-β, IL-35 is not constitutively expressed in human tissues but it is inducible in response to inflammatory stimuli. We also provide structural evidence that AU-rich element (ARE) binding proteins and microRNAs target IL-35 subunit transcripts, by which IL-35 may achieve non-constitutive expression status. Furthermore, we propose a new system to categorize anti-inflammatory cytokines into two groups: (1) the house-keeping cytokines, such as TGF-β, inhibit the initiation of inflammation whereas (2) the responsive cytokines including IL-35 suppress inflammation in full-blown stage. Our in-depth analyses of molecular events that regulate the production of IL-35 as well as the new categorization system of anti-inflammatory cytokines are important for the design of new strategies of immune therapies

    A Smart Tongue Depressor-Based Biosensor for Glucose

    No full text
    The development of new bioelectronic platforms for direct interactions with oral fluid could open up significant opportunities for healthcare monitoring. A tongue depressor is a widely used medical tool that is inserted into the mouth, where it comes into close contact with saliva. Glucose is a typical salivary biomarker. Herein, we report—for the first time—a tongue depressor-based biosensor for the detection of glucose in both phosphate buffer and real human saliva. Carbon nanotubes (CNTs) are attractive electronic materials, with excellent electrochemical properties. The sensor is constructed by printing CNTs and silver/silver chloride (Ag/AgCl) to form three electrodes in an electrochemical cell: Working, reference, and counter electrodes. The enzyme glucose oxidase (GOD) is immobilized on the working electrode. The glucose detection performance of the sensor is excellent, with a detection range of 7.3 μM to 6 mM. The glucose detection time is about 3 min. The discretion between healthy people’s and simulated diabetic patients’ salivary samples is clear and easy to tell. We anticipate that the biosensor could open up new opportunities for the monitoring of salivary biomarkers and advance healthcare applications

    Changes in Physicochemical Properties, Metabolites and Antioxidant Activity of Edible Grass during Spontaneous Fermentation

    No full text
    Fermentation is a crucial technology to improve the nutritional and functional properties of food materials. In this study, edible grass was processed by spontaneous fermentation. Changes in physicochemical properties, metabolites, and antioxidant activity of edible grass were investigated by colorimetric method and chromatography mass spectrometry-based non-targeted metabolomics approach during fermentation. The highest total polyphenol and total flavonoid contents, and free radical scavenging abilities were observed on the 17th day of fermentation. The maximum activity of superoxide dismutase was maintained stable in the fermentation time range of 7–70 days. In total, 16 differential metabolites were identified with fermentation duration up to 124 days. Fermented edible grass exerted protection from H2O2-induced cytotoxicity on HepG2 cells, regulating by the reduction in reactive oxygen species level and the increase in antioxidant enzyme activities. Overall, this study confirms that fermented edible grass obtained by spontaneous fermentation presented favorable nutritional and functional quality, and is expected to be a kind of food with antioxidant function

    Litters of self-replicating origami cross-tiles

    No full text
    corecore