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Zusammenfassung 

Das ″Eukaryotische-Initiationsfaktor-4E Bindungsprotein″ (4E-BP) ist ein Inhibitor der 
Translationsinitiation. Nicht-phosphoryliertes 4E-BP bindet an den eukaryotischen 
Initiationsfaktor 4E (eIF4E). Diese Bindung blockiert die Rekrutierung des 
Initiationskomplexes eIF4F an die Cap-Struktur des 5´Endes von eukaryotischen zellulären 
mRNAs, was die Initiation der Translation verhindert. Phosphorylierung von 4E-BP durch die 
mTOR Kinase führt zur Dissoziation des 4E-BP/eIF4E Komplexes und erhöht die 
Verfügbarkeit von eIF4E, dies wird mit Zellproliferation assoziiert. Die Aktivität von eIF4E 
wird nicht nur von 4E-BP, sondern auch durch Phosporylierung reguliert, welche wiederum 
durch die ″MAP-Kinase-Interacting-Protein-Kinase″ (MNK) reguliert wird.  

Drei Isoformen von 4E-BP sind bekannt: 4E-BP1, 4E-BP2 and 4E-BP3. 4E-BP1 und 4E-BP2 
sind an oxidativem und adipogenetischen Stress beteiligt. Beide Proteine werden im 
hämatopoetischen System gleich exprimiert, wohingegen 4E-BP3 nicht detektiert wird. 4E-
BP1 wird während der Erythroblasten-Proliferation phosphoryliert. Aus diesem Grund habe 
ich die Hämatopoese und die durch Phenylhydrazine (PHZ) induzierte Stress-Erythropoese in 
4E-BP1 und 4E-BP2 Knock-Out Mäusen und 4E-BP1,2 Doppel-Knock-Out Mäusen 
analysiert.  Ich konnte zeigen, dass die Hämatopoese in 4E-BPs defizienten Mäusen nicht 
beeinflusst wird.  Allerdings zeigten 4E-BP1,2-/- und 4E-BP2-/- Mäuse eine verspätete Antwort 
auf Phenylhydrazin (PHZ) induzierten erythropoetischen Stress. Gleichzeitig war die mRNA 
Translation von GATA-1, ein essentieller erythropoetischer Transkriptionsfaktor in 
Erythroblasten runterreguliert. Die Signaltransduktionswege mTOR und MNK1 waren bei 
erythropoetischen Stress aktiviert. Diese Daten zeigen, dass 4E-BP2, aber nicht 4E-BP1, 
notwendig ist um auf erythropoetischen Stress zu reagieren und deuten an, dass die 4E-BP 
gesteuerte translations-regulierende Maschinerie eine Rolle in der Stress-Erythropoese spielt.  
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Abstract 

Translational regulation allows an organism to generate fast responses to environmental 
changes quickly. Eukaryotic initiation factor 4E binding protein (4E-BP) is an inhibitor of 
translation initiation. Unphosphorylated 4E-BP binds to eukaryotic initiation factor 4E 
(eIF4E) blocking recruitment of the initiation complex eIF4F to the cap structure at the 5’ 
terminus of eukaryotic cellular mRNAs. Thus initiation of translation is blocked. 
Phosphorylation of 4E-BP by the mTOR kinase causes disassociation of the 4E-BP/eIF4E 
complex and increases the availability of eIF4E. EIF4E activity is not only regulated by 4E-
BP, but also phosphorylation which is regulated by MAP kinase - interacting protein kinase 
(MNK). 

Three isoforms of 4E-BP are known, termed 4E-BP1, 4E-BP2 and 4E-BP3. 4E-BP1 and 4E-
BP2 are involved in oxidative and adipogenetic stresses in vivo. They are equally expressed in 
hematopoietic system, whereas 4E-BP3 is not detected. 4E-BP1 is phosphorylated during 
erythroblast proliferation. Erythroid differentiation is blocked by overexpresssion of eIF4E in 
tissue culture. These studies implied that 4E-BPs might play role in response to erythropoietic 
stress. I examined hematopoiesis and phenylhydrazine (PHZ) induced stress erythropoiesis in 
4E-BP1 and 4E-BP2 individual knock out mice and 4E-BP1,2 compound knock out mice. I 
found that the hematopoiesis of 4E-BPs deficient mice were unaffected. However, 4E-BP1,2-/- 

and 4E-BP2-/- mice showed delayed response to phenylhydrazine (PHZ) induced 
erythropoietic stress. Simultaneously, the mRNA translation of GATA-1, which is the essential 
erythroid transcription factor, was downregulated in their erythroblasts. The signaling 
pathways through the mTOR and MNK1 were activated in erythropoietic stress. These data 
showed that 4E-BP2 but not 4E-BP1 was required for the response to erythropoietic stress and 
suggested that 4E-BP related translation regulatory machinery played a role in stress 
erythropoiesis. 
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1 Introduction 

The regulation of translation rate plays a critical role in many fundamental biological 

processes, including cell growth, development and stress response. Translation is divided into 

three phases ⎯ initiation, elongation and termination. Translation initiation is the rate-

limiting step and occurs in cap-dependent manner. This process requires a large number of 

translation initiation factors. Translation initiation factor 4F (eIF4F) complex consists of a 

mRNA cap structure binding protein — eIF4E, a large modular scaffolding protein 

performing a bridging function between the ribosome and mRNA — eIF4G and a helicase — 

eIF4A. EIF4E activity is tightly regulated by its inhibitor⎯ eIF4E binding proteins (4E-BPs) 

and phosphorylation.  

1.1 Cap-dependent translation initiation 

The Cap structure m7GpppN (where N is any nucleotide) is located at the 5’terminus of 

cellular eukaryotic mRNA molecules (except those in organelles). The basic model of the 

translation initiation process is as follows: The Methionyl-initiator tRNA (Met-tRNA i
Met), 

GTP and eIF2 form a ternary complex. This ternary complex binds to 40S ribosomal subunit, 

which associates with eIF3 and eIF1A, to form 43S pre-initiation complex. EIF3, eIF1A and 

possibly also eIF5B stimulate this reaction. The resulting 43S pre-initiation complex binds to 

mRNA to form the 48S complex, in a reaction promoted by eIF4F complex (which includes 

eIF4E, eIF4A and eIF4G), eIF4B and eIF4H. The 48S complex then scans the mRNA until 

initiation codon AUG is recognized. This triggers eIF5 to hydrolyze GTP, the eIFs then 

dissociate and the 60S ribosomal subunit joins in assembling the fully functional 80S 

ribosome that is ready to begin peptide synthesis ⎯ elongation phase (Figure 1). 

1.2 4E-BPs 

So far three 4E-BP proteins are known, termed 4E-BP1, 4E-BP2 (Pause, Belsham et al. 1994) 

and 4E-BP3 (Poulin, Gingras et al. 1998). Mouse 4E-BP1 consists of 117 amino acids and 

shares 97.4% identity to rat 4E-BP1 (PHAS-I) (Hu, Pang et al. 1994; Lin, Kong et al. 1994; 

Lin, Kong et al. 1995) and 91.5% identity to human 4E-BP1. 4E-BP2 consists of 120 amino 

acids and shares 95% identity to human 4E-BP2 and 56% identity to 4E-BP1. 4E-BP3 

consists of 101 amino acid and shares 57% and 59% identities to 4E-BP1 and 4E-BP2, 

respectively. The three genes comprise three exons and two introns. Drosophila possesses a 

single 4ebp gene encoding d4E-BP (Poulin, Brueschke et al. 2003).  

 



1.3 Expression patterns of 4E-BPs in mouse tissues 

 

 

Fig.1. Cap-dependent translation initiation ⎯ rate-limiting step of translation   Eukaryotic initiation factors 

(eIFs) are depicted as coloured, oval shapes in the figure. The Met-tRNA i
Met, GTP and eIF2 form a ternary 

complex. This ternary complex binds to 40S ribosomal subunit, which associates with eIF3 and eIF1A, to form 

43S pre-initiation complex. The resulting 43S pre-initiation complex binds to mRNA to form the 48S complex, 

in a reaction promoted by eIF4F complex (which includes eIF4E, eIF4A and eIF4G), eIF4B and eIF4H. The 48S 

complex then scans the mRNA until the initiation codon AUG is recognized. This triggers eIF5 to hydrolyze 

GTP, the eIFs then dissociate and the 60S ribosomal subunit joins in assembling the fully functional 80S 

ribosome that is ready to begin peptide synthesis ⎯ elongation phase. 

4E-BPs are expressed at different levels in different tissues. In mouse 4E-BP1 is 

predominantly expressed in adipose tissue, pancreas, skeletal muscle and heart. 4E-BP2 is 

predominantly expressed in brain. 4E-BP3 is highly expressed in kidney. However, in testis 

and spleen, 4E-BP1 and 4E-BP2 are equally expressed, whereas three 4E-BP proteins can be 

detected in liver and colon. The expression variations of three 4E-BP proteins in different 

tissues may imply that each of the three 4E-BP proteins has its own function which is tissue 

specific (Figure 2). 
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1.4 Biological function of 4E-BPs 

1.4.1 4E-BPs associate with eIF4E inhibiting eIF4F complex formation 

 

 

Fig.2. Western-blot analysis of 4E-BPs in tissues from wild type and homozygous eif4ebp1 mice. IBAT, 

interscapular brown adipose tissue; EWAT, epididymal white adipose tissue; IWAT, inguinal WAT; Panc., 

pancreas. β and γ identify 4E-BP1 and 4E-BP2 phosphorylation isoforms that exhibit different electrophoretic 

mobilities in SDS-PAGE. (figure from Kyoko Tsukiyama-Kohara, et al. Nature Medicine 7,1128-1132(2001)) 

4E-BPs prevent eIF4E from associating with eIF4G to form eIF4F complex, resulting in the 

inhibition of 43S pre-initiation complex binding to mRNA (Haghighat, Mader et al. 1995; 

Mader, Lee et al. 1995). The interface of eIF4G interacting with eIF4E is a conserved 15- 

amino acid motif shared by 4E-BP proteins in all species studied to date (Figure 4). It contains 

the “core” sequence YXXXXLΦ in which X is any amino acid and Φ is a residue possessing 

an aliphatic portion, most often L, but sometimes M or F. Thus 

4E-BPs compete with eIF4G to bind to eIF4E preventing eIF4G from associating with eIF4E 

to assemble functional eIF4F complex. Deletion of this sequence or mutation of the tyrosine 

or leucine residues to alanine(s) abolishes eIF4E binding. In addition, a 20-amino acid peptide 

derived from the eIF4E binding site of the mammalian 4E-BP1 or eIF4GII significantly 

inhibits cap-dependent translation (Fletcher and Wagner 1998; Marcotrigiano, Gingras et al. 

1999). Crystallographic analysis demonstrates eIF4E binding peptides derived from either 4E-

BP1 or eIF4GII exhibit an L-shaped α- helical conformation and bind to the convex dorsal 

surface of eIF4E. Direct and water-mediated hydrogen bonds, van der Waals, and 

hydrophobic interactions mediate the binding (Marcotrigiano, Gingras et al. 1997). The 

residues in eIF4G and 4E-BP have been demonstrated by mutagenesis studies to be crucial for 

the interaction with eIF4E. Replacement of the invariant Tyr(0)→Ala or double mutation 

Leu(5)→Ala/Leu(6) →Ala in human eIF4G abolishes interactions with eIF4E in vitro. Point 
 8



mutants of Tyr(0) →Ala and Leu(5) →Ala in 4E-BP3 showed reduced eIF4E binding both in 

vivo and in vitro. Changing Trp73→Ala in murine eIF4E prevents its interactions with 4E-

BP1 and human eIF4GI (Marcotrigiano, Gingras, et al. 1999). Taken together, a highly 

efficient mechanism for the regulation of eIF4F formation has evolved in mammals. In this 

mechanism the inhibitory 4E-BPs act as molecular mimics of the eIF4E binding motif in the 

eIF4G proteins (Figure 3). 

Fig.3. Regulation of eIF4F formation by 4E-BPs. (A) eIF4E binds to eIF4G which associates with eIF4A to 

form eIF4F complex. (B) 4E-BP and eIF4G compete for a common binding site on eIF4E to inhibit eIF4F 

complex formation (figure from Sonenberg, N., et al. Translation control of gene expression, Cold Spring 

Harbour Laboratory press, 2000). 

1.4.2 Biological function of 4E-BPs 

4E-BP proteins are important regulators of physiological functions and stress response. In 

Drosophila, there is only one 4E-BP (d4E-BP). Under starvation, d4E-BP deficient flies burn 

fat stores faster than wild type ones. Rapamycin (the inhibitor of mTOR, see 1.5.3) treatment, 

which increases 4E-BP activity, increases fat accumulation and life span under starvation 

condition in the wild type flies, whereas d4E-BP deficient flies accumulate less fat and have 

shorter life span than wild-type flies (Teleman, Chen et al. 2005). 4E-BP1 knock out and 4E-

BP2 knock out mice have greater body weights and accumulate more fat compared to control 

mice. 4E-BP1,2 compound knock out mice which are fed with high fat diet (HFD) showed 
 9
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significant increase in serum glucose, insulin, cholesterol, HDL-cholesterol level, 

accumulated more fat and had reduced metabolic rate and insulin sensitivity (Le Bacquer, 

Petroulakis et al. 2007) (Table 1). These observations imply that mTOR regulates 4E-BP to 

response to fat, glucose metabolic stress. 

In mouse brain, 4E-BP2 is expressed higher than 4E-BP1 and 4E-BP3 (Figure2). 4E-BP2 

knock out mice shows altered hippocampal long-term potentiation (LTP) and hippocampus–

dependent memory deficits and enhanced eIF4F formation in the hippocamal area CA1 

regions with increased amount of stimulation delivery (Banko, Poulin et al. 2005). In 

Drosophila, the d4E-BP activity is critical for survival under oxidative stress. Aging is a 

complicated physiological process that is characteristic of decreased physiological function 

and stress response ability. D4E-BP null mutation causes a significant decrease in lifespan 

(Teleman, Chen et al. 2005; Tettweiler, Miron et al. 2005). Upregulating 4E-BP activity by 

partial inhibition of TOR in yeast, worms and Drosophila results in a significant increase in 

the life spans of these organisms (Kaeberlein, Powers et al. 2005; Martin and Hall 2005) 

(Table 1).  

1.5 The regulation of 4E-BPs 

1.5.1 Phosphorylation of 4E-BPs 

4E-BP activity is regulated at both transcriptional and post-translational level. 4E-BP1 was 

highly phosphorylated in response to insulin or growth factor stimulation of rat adipocytes or 

murine Swiss 3T3L1 adipocytes. Six Ser/Thr phosphorylation sites have been identified in the 

mammalian 4E-BP1 protein (Fadden, Haystead et al. 1997). Two phosphorylation residues, 

Thr-37 and Thr-46, lie on amino-terminal side of the eIF-4E binding motif (located at aa 54-

60), and four phosphorylated residues, Ser-65, Thr-70, Ser-83 and Ser112, have been 

identified on the carboxy-terminal side of the eIF4E binding motif. 4E-BP phosphorylation is 

a highly ordered process. Phosphorylation of Thr-37 and Thr-46 acts as a priming step for Ser-

65 and Thr-70 phosphorylation (Gingras, Gygi et al. 1999). Alignment of mammalian 4E-BPs 

reveals that all of the phosphorylated residues in 4E-BP1 are conserved in 4E-BP2 and 4E-

BP3, except for Ser-112. However, two-dimensional gel analysis and tryptic phosphopeptide 

mapping only indicate that 4E-BP2 is also phosphorylated on Thr-37 and Thr-46. Moreover, 

the response to insulin treatment is weaker for 4E-BP2 phosphorylation compared to that of 

4E-BP1 (Figure 4). 



1.5.2 Biological function of 4E-BPs phosphorylation 

The affinity of 4E-BPs to eIF4E is regulated by phosphorylation. Dephosphorylated 4E-BPs 

bind to eIF4E, reducing the availability of eIF4E to form eIF4F complex. Phosphorylated 4E-

BPs release eIF4E, increasing the availability of eIF4E for eIF4F formation.  

 

 

Fig.4. Alignment of the mammalian 4E-BPs through the eIF4E-binding site. The conserved eIF4E-binding 

motif is in red. Phosphorylated residues in 4E-BPs are in green (figure from Sonenberg, N., et al. Translation 

control of gene expression, Cold Spring Harbour Laboratory press, 2000) 

1.5.2.1 4E-BPs phosphorylation and cell growth 

Extracellular stimuli like hormones, growth factors and abundant nutrients activate certain 

signalling pathways (see 1.5.3), promote cell growth and proliferation and stimulate 

translation initiation and protein synthesis. These effects often combine with the increase of 

4E-BP phosphorylation resulting in the disassociation of eIF4E with the 4E-BPs and thus 

increasing availability of eIF4E (Kleijn and Proud 2000) (Lynch, Fox et al. 2000) (Anthony, 

Anthony et al. 2001). 
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1.5.2.2 4E-BPs phosphorylation and apoptosis 

Some stimuli, especially those which can ultimately result in apoptosis, usually inhibit 

translation initiation and abrogate 4E-BP phosphorylation, for example, starvation for 

essential nutrients (Fox, Kimball et al. 1998; Yoshizawa, Kimball et al. 1998; Kimball, Shantz 

et al. 1999; Vary, Jefferson et al. 1999; van Sluijters, Dubbelhuis et al. 2000), ischaemia, 

hypoxia (Tinton and Buc-Calderon 1999; Martin, Munoz et al. 2000), ethanol toxicity (Lang, 

Frost et al. 2000), growth factor deprivation (Kleijn and Proud 2000), strenuous exercise 

(Gautsch, Anthony et al. 1998), exposure to glucocorticoids (Shah, Kimball et al. 2000; Shah, 

Kimball et al. 2000) and infection (Vary and Kimball 2000). 4E-BP dephosphorylation and 

increased association of 4E-BP1 with eIF4E have been observed in response to all apoptotic 

inducers so far studied (Bushell, Wood et al. 2000). Several studies indicate that rapamycin 

induces apoptosis and dephosphorylation of 4E-P1 in B-cell lymphoma cell line BKS-2 

(Muthukkumar, Ramesh et al. 1995), rheumatoid synovial cells (Muthukkumar, Ramesh et al. 

1995) and human rhabdomyosarcoma cells (Hosoi, Dilling et al. 1999).   

1.5.2.3 4E-BPs and transformation 

4E-BP dephosphorylation during apoptosis induction implies its negative regulator activity in 

transformation. Overexpression of 4E-BPs in eIF4E and v-src transformed cells causes a 

significant reversion of the transformed phenotype (Rousseau, Gingras et al. 1996). Imatinib 

mesylate, the inhibitor of oncogene Bcr-Abl, induces translation initiation complex eIF4F 

formation and 4E-BP1 dephosphorylation in Bcr-Abl-expressing cell line and primary chronic 

myelogenous leukaemia (CML) cells (Prabhu, Saadat et al. 2007). During the differentiation 

of human papillomavirus-containing cells, 4E-BP1 is hyperphosphorylated combining with 

enhanced translation of oncoprotein E7 mRNAs (Oh, Kalinina et al. 2006). These studies 

suggest that regulation of 4E-BP phosphorylation is an important regulatory mechanism of 

4E-BP function in cellular transformation.  

1.5.3 The target of rapamycin (mTOR) signaling pathway-upstream of 

4E-BPs 

The phosphorylation of 4E-BPs is regulated by mTOR signaling pathway. Activation of 

mTOR pathway phosphorylates 4E-BPs. In response to different extracellular stimuli, mTOR 

integrates various signaling pathways to play a role in gene transcription, translation (regulate 

S6 kinase and 4E-BPs), ribosome biogenesis and macroautophagy (Figure 5). 



1.5.3.1 Rapamycin and mTOR 

Rapamycin is a macrocyclic lactone purified from the metabolite of bacterial strain 

Streptomyces hygroscopicus which was found in a soil sample from the Easter Island (known 

as Rapa Nui in the local language). Later rapamycin was found to inhibit proliferation of 

mammalian cells and to possess immunosuppressive properties. The mode of action of 

rapamycin is conserved from yeast to mammals. Upon entrance into the cell, rapamycin forms 

a complex with peptidyl-prolyl cis/trans isomerase FKBP12, which presumably assists in 

protein folding. This complex then binds to and inhibits its target⎯TOR (the target of 

rapamycin) (Abraham and Wiederrecht 1996; Thomas and Hall 1997).  

 

Fig.5.  mTOR signaling and eIF4E phosphorylation regulation. EIF4E activity is regulated by 4E-BPs and 

phosphorylation. Activated mTOR phosphorylates 4E-BPs resulting in eIF4E release to interact with eIF4G, 

which combines with eIF4A to form eIF4F. mTOR integrates into several upstream signaling pathways 

according to different stimuli. Growth factors (insulin/IGF), mitogen, cytokines and nutrition activate mTOR. 

However, low energy and hypoxia inactivate mTOR. Extracellular stimuli activate ERK or p38MAPK signalling 

pathway to activate MNK. Activated MNK phosphorylates eIF4E to regulate eIF4F formation. Arrows represent 

activation. Bars represent inhibition (figure from www. cellsignaling.com).  

All eukaryotic genomes examined so far (including yeasts, algae, slime mold, plants, worms, 

flies, and mammals) contain a tor gene. Unlike yeast, which in some cases possesses two tor 
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genes, higher eukaryotes possess only a single tor gene. Therefore two TOR proteins (TOR1 

and TOR2) are present in S. cerevisiae, but only TOR1 is present in metazoans, including D. 

melanogaster (dTOR) and mammals (mTOR). Human tor gene has been mapped to 

chromosome 1p36.2. Mouse tor gene has been mapped to chromosome 4. The TOR proteins 

are highly evolutionarily conserved and share 40%-60% identity in different species. They 

belong to the phosphatidylinositol kinase-related kinase (PIKK) family. PIKK family 

members contain a carboxy-terminal serine/threonine protein kinase domain that resembles 

the catalytic domain of phosphatidylinositol 3-kinases (PI3Ks) and PI4Ks.  

1.5.3.2 Insulin/IGF-PI3K-TOR 

The TOR pathway and the insulin/IGF-PI3K signaling pathway are functionally connected. 

Important insights on the cross talk between these two pathways came from studies on the 

TSC1-TSC2 heterodimer (tuberous sclerosis complex) and the small GTPase Rheb (Ras-

homolog enriched in brain) which binds directly to the kinase domain in TOR and activates 

TOR in Drosophila and mammalian cells. 

Binding of insulin or insulin-like growth factors (IGFs) to their receptors leads to recruitment 

and phosphorylation of the insulin receptor substrate (IRS), and subsequent recruitment of 

PI3K. PI3K converts phosphatidylinositol-4,5-phosphate (PIP2) in the cell membrane to 

phosphatidylinositol-3,4,5-phosphate (PIP3). PIP3 accumulation is antagonized by the lipid 

phosphatase ⎯ phosphatase with tensin homolog (PTEN). PIP3 corecruits PtdIns-dependent 

protein kinase (PDK1) and protein kinase B (Akt) to the membrane, resulting in the 

phosphorylation and activation of Akt by PDK1. TOR1 is wired to the PI3K pathway through 

the tuberous sclerosis proteins hamartin (TSC1) and tuberin (TSC2). TSC1 and TSC2 form a 

heterodimer which prevents Rheb from binding to TOR, thus blocks TOR signaling. TSC2 is 

phosphorylated and functionally inactivated by Akt in response to insulin (Manning 2004) 

(Figure 5). 

1.5.3.3 Nutrients 

Amino acid starvation, in particular the absence of leucine, results in a rapid 

dephosphorylation of the TOR effectors S6K1 and 4E-BP1, whereas re-addition of amino 

acids restores S6K1 and 4E-BP1 phosphorylation in an TOR-dependent manner (Hay and 

Sonenberg 2004)(Figure 5).  

1.5.3.4 Energy and hypoxia 

AMP-activated protein kinase (AMPK) is activated in response to low cellular energy (high 

AMP/ATP ratio). Activated AMPK directly phosphorylates TSC2, leading to the inhibition of 
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TOR signaling (Inoki, Corradetti et al. 2005). The tumor suppressor serine/threonine kinase 

11 (STK11/ LKB1) has been identified as an upstream kinase of AMPK, suggesting that 

LKB1 is linked to the TSC-TOR1 signaling pathway. Lkb1 mutant cells exhibit hyperactive 

mTOR signaling (Corradetti, Inoki et al. 2004; Shaw, Bardeesy et al. 2004). Thus, upon 

energy deprivation, LKB1 in conjunction with AMP activates AMPK, which in turn 

phosphorylates and activates TSC2, resulting in the inhibition of mTOR. The regulation of 

mTOR in hypoxia is investigated in mammalian cells and Drosophila. During hypoxia, the 

transcription factor hypoxia-inducible factor 1 (HIF1) upregulates REDD (regulated in 

development and DNA damage responses; Scylla/ Charybdis in Drosophila), which acts 

upstream of TCS1/2 to inhibit TOR signaling (S6K and 4E-BP1 hypophosphorylation). 

However, in contrast to energy depletion, TOR inhibition by hypoxia requires neither AMPK 

nor LKB1, but the relationship between prolonged hypoxia and LKB1-AMPK pathway can 

not be excluded (Brugarolas, Lei et al. 2004; Reiling and Hafen 2004)(Figure 5).  

Taken together, various extracelluar stimuli activate/inhibit mTOR through different signaling 

pathways to further regulate target genes expression.  

1.5.4 Transcriptional regulation of 4E-BPs 

Besides post-translational modification of 4E-BP by phosphorylation, 4E-BP is 

transcriptionally upregulated by forkhead-related transcription factor (FOXO) as well. FOXO 

binds directly to 4E-BP promoter. FOXO is inactivated by phosphorylation (Brunet, Bonni et 

al. 1999; Kops, de Ruiter et al. 1999; Alvarez, Martinez et al. 2001). The insulin receptor 

phosphorylates FOXO through PI3K/dAKT signalling pathway. Except slight wing-size 

reduction, dFOXO-null flies do not show growth defect. However, they are hypersensitive to 

oxidative stress (Junger, Rintelen et al. 2003; Puig, Marr et al. 2003).  

1.6 eIF4E phosphorylation and activity 

1.6.1 Biochemical research 

In addition to 4E-BPs, the activity of eIF4E is regulated by phosphorylation as well. However 

the effect of eIF4E phosphorylation on translation rate is not clear. The affinity of 

phosphorylated eIF4E to mRNA cap structure is not clear. Minish et al (Minich, Balasta et al. 

1994) found an increase in 5’ cap structure binding affinity of phosphorylated eIF4E 

compared with unphosphorylated eIF4E. Marcotrigiano et al (Marcotrigiano, Gingras et al. 

1997; Marcotrigiano, Gingras et al. 1997) proposed the “clamping” model based on the 

crystallographic structure of the murine eIF4F complex with m7GDP. It postulated the 

formation of a salt bridge between the phosphorylated Ser209 (the phosphorylation site of 
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mammalian eIF4E) and Lys159, which was situated across the entrance to the cap structure 

binding slot. Such a clamp could stabilize the mRNA chain at the protein surface. In 

controversy, Sheper et al and Zubereck J et al (Scheper, van Kollenburg et al. 2002; Zuberek, 

Wyslouch-Cieszynska et al. 2003) reported that phosphorylated eIF4E attenuated its 

interaction with the cap structure analogs or capped mRNA. Sheper, et al proposed two 

possible mechanisms based on the increase in the dissociation rate that was observed upon 

phosphorylation of eIF4E. One mechanism was that by decreasing the affinity for cap 

structure, phosphorylation of eIF4E could facilitate the release of tethered eIF4F from the 

5’end of mRNA to promote ribosome scanning. Another mechanism was that the 

phosphorylation of eIF4E might be “reprogramming” of the translational machinery by the 

release of initiation factors from existing translational complex, allowing other mRNAs to 

become translated.  

1.6.2 Biological function of eIF4E phosphorylation 

Mammalian eIF4E is phosphorylated at Ser209 in response to mitogen, polypeptide 

hormones, growth factors, oxidative stress and cytokines which cause an increase in 

translation initiation and protein synthesis (Kleijn, Scheper et al. 1998; Gingras, Raught et al. 

1999; Raught and Gingras 1999). Increased eIF4E phosphorylation seems not always related 

to increased translation rate. For example, an increase in eIF4E phosphorylation is observed in 

response to some types of cellular stress, including exposure to anisomycin, arsenite (Morley 

and McKendrick 1997), tumor necrosis factor-α and interleukin-1β, even though translation 

rates actually decrease in these situations. MAP kinase –interacting protein kinase (MNK) is 

the only known eIF4E kinase so far. There are two MNKs termed MNK1 and MNK2. MNK1 

binds to the eIF4G family proteins rather than interact with eIF4E directly. This interaction is 

required for eIF4E phosphorylation (Morley and McKendrick 1997; Wang, Flynn et al. 1998).  

Expression of active mutants of MNK1 and MNK2 in 293 cells diminished cap-dependent 

translation in a transient reporter assay. The same effect on cap-dependent translation is 

observed when MNK1 is activated by the Erk or p38 pathway. In line with these findings, 

addition of recombinant active MNK1 to rabbit reticulocyte lysate results in a reduced protein 

synthesis in vitro. Overexpression of MNK2 causes a decrease in protein synthesis rate in 293 

cells. By using CGP57380, a novel low-molecular weight kinase inhibitor of MNK1, it is 

found that eIF4E phosphorylation is not crucial to the formation of the initiation complex, 

mitogen-stimulated increase in cap-dependent translation and cell proliferation. This result 

suggests that the kinase activity of MNK may serve as a limit of cap-dependent translation 

(Knauf, Tschopp et al. 2001).  
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In Drosophila, the phosphorylation of eIF4E decreases upon heat shock concomitant with a 

decrease in translation rate. Drosophila eIF4E is phosphorylated at Ser251 that corresponds to 

extracellular signals. The flies in which eIF4E can no longer be phosphorylated (Ser Ser251Ala) 

have development defect and are smaller in size when compared to control. Adult eyes of the 

Ser Ser251Ala mutants have smaller and fewer ommatidia. Wing imaginal disk cells are smaller 

than those in wild type flies (Lachance, Miron et al. 2002)(Table 1). In the mixed genetic 

background (129SvJ1BALB/C) 4E-BP1 knock out mice, eIF4E phosphorylation increases in 

MEF combined with a increase in metabolic rate and UCP1 and PGC1 expression, which are 

adipose tissue metabolism related genes (Tsukiyama-Kohara, Poulin et al. 2001)(Table 1). 

These studies suggest that eIF4E is regulated by phosphorylation during cell growth, 

development and stress response. However, so far there is no direct evidence of how eIF4E 

phosphorylation affects translation initiation rate.  

1.6.3 Signaling pathway for eIF4E phosphorylation 

Mitogen and stress induce eIF4E phosphorylation mediated by activation of the extracellular 

signal-regulated protein kinases (ERKs) and p38 mitogen-activated protein (MAP) kinases, 

respectively. These two pathways activate the common eIF4E kinase MNK to phosphorylate 

eIF4E (Figure 5).  

1.7 eIF4E and transformation 

Early studies show that stable expression of eIF4E in NIH3T3 and CHO cells enhances 

cellular proliferation, induces transformed morphology (spindle-shape, refractile cells) and 

promotes growth in soft agar (Lazaris-Karatzas, Montine et al. 1990). EIF4E cooperated with 

v-myc or E1A transforming primary rodent fibroblasts (Lazaris-Karatzas and Sonenberg 

1992). Reduction of eIF4E decreases the malignancy of ras-transformed cloned rat embryo 

fibroblasts (Lazaris-Karatzas, Smith et al. 1992). EIF4E is overexpressed in many solid 

tumors and tumor cell lines. The list includes cancers of the colon, breast, bladder, lung, 

prostate, gastrointestinal tract, head and neck, Hodgkin’s lymphoma and neuroblastomas 

(Kerekatte, Smiley et al. 1995; Anthony, Carter et al. 1996; De Benedetti and Harris 1999; 

Nathan, Franklin et al. 1999; Rosenwald, Chen et al. 1999; Wang, Rosenwald et al. 1999; 

Rosenwald, Hutzler et al. 2001; Rosenwald, Pechet et al. 2001; Wang, Lloyd et al. 2001). 

EIF4E transgenic mice develop tumors (16% B cell lymphomy, 13% angiosarcomas, 21% 

lung adenocarcinomas, 21% hepatocellular adenomas) beginning at 16 months of age (Table 

1). EIF4E transgenic mice are crossed with c-Myc transgenic mice (develop B cell lymphoma 

by an average age of 3-4 months), the onset of lymphoma in eIF4E and c-Myc double 

transgenic mice are accelerated to less than one month of age. This tumor model suggests 
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eIF4E directly triggers tumor formation in vivo in tissues of various histological origins and 

the crucial contribution of the genetic cooperation between eIF4E and c-Myc toward 

lymphomagenesis (Ruggero, Montanaro et al. 2004). 

1.8 eIF4E in ageing and stress 

In Caenorhabditis elegans, loss of IFE-2, a specific eIF4E isoform that functions in somatic 

tissues, reduces global protein synthesis, protects from oxidative stress and extends lifespan. 

Knock down of mTOR further increases the lifespan of ife-2 mutants. This observation 

combining with the studies in mice and Drosophila imply that mTOR-4E-BP-eIF4E 

translation machinery is involved in ageing and stress response (Syntichaki, Troulinaki et al. 

2007)(Table 1). 

1.9 Aim of the study 

4E-BP1 and 4E-BP2 are equally and dominantly expressed in hematopoietic system. In HL-

60 (promyelocytic leukaemia cell line) and U-937 (monoblastic cell line) cells, the translation 

rate is decreased when cells are induced to differentiate along the monocytic / macrophage 

pathway or along the granulocytic pathway. Induction of differentiation into monocytes/ 

macrophage in these two cell lines results in dephosphorylation of 4E-BP1 but it does not 

affect 4E-BP2. Induction of HL-60 into granulocytes results in increased expression of 4E-

BP2 and decreased expression of 4E-BP1 (Grolleau, Sonenberg et al. 1999). In addition, 

activation of primary human immature CD4+CD8+ double positive thymocytes with anti-CD3 

and anti-CD4 results in decrease of eIF4E phosphorylation and protein synthesis, whereas the 

eIF4E phosphorylation and protein synthesis are increased in mature CD4+ or CD8+ 

thymocytes following anti-CD3 and anti-CD4 stimulation. The expression of 4E-BP2 is 

higher in immature CD4+CD8+ thymocytes but lower in mature CD4+ or CD8+ thymocytes 

(Beretta, Singer et al. 1998). Finally, mTOR regulates both proliferation of megakaryocyte 

progenitors and differentiation of late stages megakaryocytes. Phosphorylations of mTOR, 

p70S6K1, and 4E-BP1 are diminished in thrombopoietin-cultured human megakaryocytes in 

response to rapamycin treatment. Rapamycin also induces a delay in the expression of 

megakaryocyte markers and prevents the generation of proplatelet megakaryocytes (Raslova, 

Baccini et al. 2006). These observations suggest that 4E-BPs related translation machinery is 

functional in the proliferation and differentiation of hematopoietic lineages. 4E-BP1 is 

phosphorylated during erythroblast proliferation. Other studies show that overexpression of 

eIF4E blocks erythroblasts differentiation in tissue culture. These studies imply that 4E-BPs 

might play role in response to the erythropoietic stress. The aim of the study was to 

investigate the function of 4E-BP1 and 4E-BP2 in hematopoiesis and stress erythropoiesis 
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using 4E-BP1 and 4E-BP2 individual knock out mice and 4E-BP1,2 compound knock out 

mice.  

 

 

 

 

 

2 Materials  

2.1 Animals 

4E-BP1, 4E-BP2 individual knock out mice (4E-BP1-/- , 4E-BP2-/-) and 4E-BP1,2 compound 

knock out mice (4E-BP1,2-/-) with 129SvJ1BALB/C mixed genetic background (From Prof. 

Nahum Sonenberg, Department of Biochemistry, McGill University, Canada ) 

2.2 Chemicals and reagents 

7-amino-actinomycin D (7-AAD)                                   Pharmingen 

20× L- Glutamine                                                               Gibco 

100% ethanol                                                                     Merk 

BSA                                                                                   Sigma-Aldrich 

Chemiluminescent HRP Substrate  

(ImmobilonTM Western)                                                   Millipore 

Dexamethasone                                                                 Sigma-Aldrich 

dNTP                                                                                Amersham Biosciences 

DNA Taq polymerase II                                                  Amersham Biosciences 

EDTA                                                                                Calbiochem 

erythroid lysing buffer (BD Pharmlyse TM  )                       BD Bioscience 

Fetal bovine serum                                                           Gibco 

Ficoll-Paque Plus                                                              Amersham Biosciences 

HBSS                                                                                Gibco 
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HEPES                                                                               Merk 

Isopropanol                                                                       Merk 

NaN3                                                                                 Merk 

NaCl                                                                                   Merk 

Non-fat dry milk powder               Merk 

NP-40                                                                                 Fluka Chemie 

Phenylhydrazine hydrochoride                                       Sigma-Aldrich 

phenol/choloroform                                                          Roche  

proteinase K                                                                      Sigma-Aldrich 

protase inhibitor cocktail                                                     Roche 

random primers                                                                  Promega 

reticulocyte stain                                                               Sigma-Aldrich 

sodium orthovanadate                                                         Sigma-Aldrich 

Sodium Dodecyl Sulfate                                                     Roche 

Superscript II reverse transcriptase                                    Invitrogen 

Trypan Blue                                                                       Sigma-Aldrich 

Tween-20                                                                            Sigma 

2.3 Medium 

MethoCult®3334                                                             StemCell Technologies 

MethoCult®3434                                                             StemCell Technologies 

StemPro-34 medium                                                        Gibco 

2.4 Cytokine 

human recombinant erythropoietin ( hEPO ),                   R&D System 

insulin-like growth factor1 ( IGF-1 )                                R&D System 

murine recombinant stem cell factor ( mSCF )                     obtained from   Prof.Hartmut Beug 
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2.5 Kits 

Platinum® SYBR® Green qPCR SuperMix UDG            invitrogen 

RNeasy Mini Kit                                                              Qiagen 

2.6 Antibodies 

2.6.1 Fluorochrome-conjugated antibodies 

FITC-anti-Ter119                                                            Pharmingen 

FITC-anti-B220                        Pharmingen 

FITC-anti-CD8                        Pharmingen 

FITC-anti-Gr-1                        Pharmingen 

PE-anti-CD71                                                                      Pharmingen 

PE-anti-CD11b                        Pharmingen 

PE-anti-CD4               Pharmingen 

2.6.2 Other antibodies 

2.6.2.1 Primary antibodies 

4E-BP1                                                                                 Cell Signaling Technology 

4E-BP2                                                                                 Cell Signaling Technology 

anti-Ter119-biotin                                                          Pharmingen 

α-Tubulin ( B-7 )                                                           Santa Cruz 

eIF-4E                                                                             BD Biosicence 

GATA-1( C-20,sc-1233 )                                               Santa Cruz 

Mnk1( Thr197/202 )                                                             Cell Signaling Technology 

Phospho-eIF4E ( Ser209 )                                              Cell Signaling Technology 

Phospho-mTor ( Ser2481 )                                             Cell Signaling Technology 

2.6.2.2 Horseradish peroxidase-conjugated secondary antibody 

donkey anti-rabbit                                                            Amersham Biosciences 

donkey anti-goat                                                              Santa Cruz 
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sheep anti-mouse                                                             Amersham Biosciences 

2.7 Appliances 

Animal Blood Counter                                                   Scil animal care company 

Bradford protein analysis                                               Bio-Rad 

FACSCalibur flow cyctometer                                      BD Bioscience 

Light Cycler 3.5                                                             Roche 

MACS separater                                                             Miltenyi Biotec 

Western Blotting apparatus                                            Biometra 

2.8 Consumables 

1ml syringe                                                                     Omnifix-f, BRAUN  

24 gauge needle                                                              Sterican, BRAUN 

100-µ strainer                                                                 BD Bioscience 

Anti-biotin magnetic bead                                              Miltenyi Biotec 

EDTA coated microvette                                                Sarstedt, Germany 

MACS pre-sep filter                                                       Miltenyi Biotec 

MACS cell separation column                                       Miltenyi Biotec 

PVDF membrane  

( Immobilon-P transfer membrane)                                Millipore 

X-ray film                                                                        Kodak 

2.9 Software 

CellQuest                                                                        BD Bioscience 

Light Cycler software version 3.5.3                               Roche Applied Science 

 

 

 

 

 



 23

 

 

 

 

 

 

3 Methods  

 

3.1 Mice 

4E-BP1-/- and 4E-BP2-/- mice were kindly provided by Dr. Nahum Sonenberg (Dapartment of 

Biochemistry and McGill Cancer Centre, McGill University, Montreal, Quebec H3G 1Y6, 

Canada). All the mice were maintained according to the procedure approved by the Max 

Delbrück Center (Germany) institutional animal care committee. 4-6 months old mice were 

analyzed (results of peripheral blood parameters obtained from 2-12 months old mice). 

3.2 Phenylhydrazine induces hemolytic anemia 

3.2.1 Phenylhydrazine (C6H5NHNH2) 

Phenylhydrazine, as an oxidant, is known to be an effective inducer of hemolysis when 

administered to normal animals. Its effect is mediated by production of phenylhydrayl 

radicals, H2O2, O2
-, phenyldiazene and phenyl radicals produced by the interaction of the drug 

with oxyhemoglobin. As a consequence of the production of these free radicals hemoglobin is 

first oxidized to methemoglobin and then to hemicrome. At the same time, the membrane 

proteins, lipid, potassium and calcium permeability, band 3 clustering, autologous IgG 

binding are modified (Magnani, Rossi et al. 1988).  

3.2.2 Induction of hemolytic anemia 

Mice were intraperitoneally injected on day 0, 1 with 60mg/kg phenylhydrazine 

hydrochloride in phosphate-buffer saline (PBS). 

3.3 Extraction of DNA from mouse tail 

DNA lysis buffer: 

EDTA                 50mM 
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NaCl                   100mM 

Proteinase K       200μg/ml 

SDS                    0.2% 

Tris                     100mM (pH 8.0) 

2-5mm mouse tail tip was cut off and put into 1.5ml microcentrifuge tube. 200μl DNA lysis 

buffer was added. The sample was shaken at 800rpm incubated at 55°C overnight. On the 

second day, the tube was incubated at 95 °C for 10 minutes to inactivate the proteinase K. The 

pellet was spun down and the supernatant was transferred into new tube. One volume of 

phenol/choloroform was added, mixed gently with the sample and centrifuged for 5minutes at 

13000rpm. The aqueous phase was transferred into a new tube and 1/10 volume of 3M NaAc 

pH5.2 and 2 volumes of 100% ethanol were added. The tube was inverted and swirled to mix 

and precipitate DNA. The DNA was spun down at 14000rpm for 5 minutes at room 

temperature. The supernatant was aspired and washed once with 70% ethanol. The pellet was 

briefly air-dried at room temperature and was then dissolved in 20-30 μl TE buffer. 

3.4 PCR-based genotyping 

Genotyping of mice was performed by polymerase chain reaction (PCR) analysis of tail DNA. 

Primer sequences were as follows:   

4e-bp1: forward primer (5'-GATGGAGTGTCGGAACTCACC-3'),  

               reverse primer (5'-GACCTGGACAGGACTCACCGC-3');  

4e-bp2: forward primer (5'-GGTGGGACTGTCGGTCTTCTG -3') ,  

               reverse primer (5'-CAGCACCTGGTCATAGCCGTG-3') 

neo:       forward primer (5'-GCATCGAGCGAGCACGTACTC-3').  

The PCR programme were as follows: 1 cycle at 94°C for 5 minutes,  30 cycles at 94°C for 1 

minute, 65°C for 1 minute, 72°C for 1 minute with a final cycle at 72°C for 5 minutes.  

3.5 Acquirement of peripheral blood 

Peripheral blood was obtained by puncturing the ventricle of the heart with a 21G needle. 

100µl peripheral blood was placed in an EDTA coated microvette.  
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3.6 Isolation of bone marrow cell 

Mice were sacrificed by CO2 asphyxiation. Femurs were put in a sterilized Petri dish with 

PBS on ice. A 1ml-syringe with a 24 gauge needle was used to flush bone marrow from femur 

with cold PBS or HBSS and the cell suspension was passed through the needle several times 

and was filtered through MACS pre-sep filter to make single-cell suspension.  

3.7 Isolation of spleen cell 

Spleen was mechanically dissociated by pushing with a syringe plunger through a 100-µm 

strainer in PBS or HBSS. The cell suspension was passed through 24 gauge needle several 

times and was filtered through MACS pre-sep filter.   

3.8 Measurement of haematological blood parameters 

Peripheral blood was obtained from the heart with a 21G needle. 30μl of blood was put into 

an EDTA-coated microvette. 30μl of blood and 20μl reticulocyte stain were mixed well and 

incubated at room temperature for 15 minutes. The blood smears were made on the 

microscope slides, dried in air and evaluated under the oil immersion on a light microscope. 

Under normal erythropoiesis, 1000 cells per slide were counted. Under phenylhydrazine 

induced stress erythropoiesis (48 hours after second injection ), 500 cells per slide were 

counted.  

3.9 Cultivation of mouse erythroblasts 

3.9.1 Procedure of erythroblasts cultivation 

Bone marrow cells were isolated from one femur. The cells were suspended in 5ml erythroid 

lysis buffer for 8 minutes, centrifuged at 1000rpm for 5 minutes at room temperature and the 

supernatant was aspirated. The cells were washed twice with HBSS and passed through the 

100μm Nylon cell strainer. 2-4 ×106 / ml of mononuclear cells were seeded in StemPro-34 

medium supplemented with nutritions, 2mM L-glutamine, 2U/ml human recombinant 

erythropoietin (hEPO), murine recombinant stem cell factor (SCF, 1:100 dilution), 10-6M 

dexamethasone and 40ng/ml insulin-like growth factor (IGF-1). The mass cultures of 

erythroblast were subjected to daily half medium changes and addition of fresh factors. Cell 

density was maintained at 2-4 ×106 / ml. In general, erythoblasts start to proliferate 4 to 6 days 

after seeding. About every 5-6 days, the cells were density gradient purified by ficoll 

centrifugation for 30 minutes at 700× g, 20°C to remove dead cells and differentiated cells. 

The cells were washed at least twice with HBSS to get rid of remaining ficoll before they 



were re-suspended in the medium. The number of living cells was determined on the indicated 

day by trypan blue exclusion.  

3.9.2 Determination the percentage of erythroblasts in the cultivated 

cells 

To examine whether the cultivated cells were erythroblasts, we checked the expression of 

different lineages specific surface antigens using flow cytometry. I found that around 90% 

cells were erythroblasts, which expressed erythroid lineage surface antigens CD71, C-Kit, 

Ter119 (Figure 8A); 0.44% cells expressed B lymphocyte surface antigen B220 (Figure 8B); 

2.12% cells expressed myeloid surface antigens CD11b, Gr-1(Figure 8C); 9.22% cells 

expressed megakaryocyte surface antigen CD41(Figure 8D). 

 

 

3.9.3 Morphological analysis of cultivated cells 

Morphological analysis of cultivated cells showed that most cells were erythroblasts (Figure9) 
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Fig.9. Morphological analysis of cultivated cells .Cultivated cells were harvested and subjected to cytospin and 
Giemsa staining. 
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Fig.8. Expression of lineages specific surface antigens on cultivated cells using flow cytometry. Cells were 

labeled with fluorochrome-conjugated antibodies recognizing different lineage specific surface antigens: (A) 

erythrobalsts (CD71, C-KIT, TER119), numbers in the quadrants (upper left, upper and lower right) indicated the 

percentages of erythroblasts; (B) B lymphocytes (B220), numbers in the quadrants (upper and lower right) 

indicated the percentages of B lymphocytes; (C) Granulocytes/Monocytes (Gr-1, CD11b), numbers in the 

quadrants (upper left, upper and lower right) indicated the percentages of granulocytes and monocytes; (D) 
 28
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Megakaryocytes (CD41), numbers in the quadrants (upper and lower right) indicated the percentages of 

megakaryocytes. 

3.10 Flow cytometry 

FACS buffer: 

EDTA            2mM 

FCS                2% 

NaN3              0.1%  

In PBS 

Single-cell suspension was treated with lysis buffer to lysate mature erythrocyte. The cells 

were then washed in FACS buffer and re-suspended in FACS buffer. Freshly isolated spleen 

cells, bone marrow cells or harvested cultivated erythroblasts were incubated with 

corresponding fluorochrome-conjugated antibodies. The immunostaining procedure was 

performed according to standard protocol: Briefly, about 106 cells were suspended in 100μl 

FACS buffer containing diluted fluorochrome-conjugated antibodies in FACS tubes and 

incubated for 15-20 minutes in the dark at 4°C. After washing once with cold FACS buffer, 

the cells were stained with 7-amino-actinomycin D (7-AAD) (1:100) for 2 minutes to exclude 

dead cells from analysis. After adding 200μl of FACS buffer, flow cytometry analysis was 

carried out on a Becton Dickinson FACSCalibur. 

3.11 Colony forming assay 

The cells from the spleen of control mice were suspended in 2ml HBSS. The cells from the 

spleen of PHZ treated mice were suspended in 3ml HBSS. 10μl cell suspension was mixed 

with 1ml 3% acetic acid and reacted for 8 minutes at room temperature to eliminate mature 

erythrocytes. Then mononuclear cells concentration of the cell suspension was determined. To 

detected CFU-E colonies, 300μl cell suspension that contains 2×105 spleen mononuclear cells 

was properly mixed with 3ml methylcellulose medium on the roller for 20 minutes. Finally 

1ml mixture was plated in triplated in 33mm dish (6×104 cells/dish). The colonies were 

counted after 2 days in culture. To detected BFU-E colonies, 300μl cell suspension which 

contains 6×105 was mixed with 3ml methylcellulose medium. The colonies were counted after 

9 days in culture. The cells from bone marrow were suspended in 2ml HBSS. The same 

procedure was used to detect CFU-E, BFU-E and CFU-GM colonies. 200μl cell suspension 

that contains 4×104 bone marrow mononuclear cells was mixed with 2ml methylcellulose 

medium and plated in duplicated in 33mm dish (2×104 cells/dish).  
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3.12 Enrichment of ter119 positive splenocytes 

Splenocytes were treated with erythrocyte lysis buffer and washed twice with cold running 

buffer. Cells were then incubated with 10 μl of anti-Ter119-biotin primary antibody in 1ml of 

running buffer for 15 minutes at 4°C. The cells were washed once with cold running buffer. 

Cell pellet was re-suspended in 180μl of running buffer with 20μl of anti-biotin beads, and the 

reaction mixture were incubated in dark at 4°C for 15 minutes, followed by washing once 

with cold buffer. Cell pellet was re-suspended in 500μl of running buffer and cell separation 

was carried out using MACS cell separation column according to the manufacturer’s 

instruction.  

Rinsing buffer: 

EDTA                            2mM 

in PBS 

 

Running buffer: 

BSA                               0.5% 

EDTA                            2mM 

in PBS 

Cleaning buffer: 

70% ethanol diluted from 100% ethanol solution 

3.13 Preparation of protein extract 

Lysis buffer 

EDTA                                1mM 

HEPES                              50mM pH7.0 

NaCl                                  250mM 

NP-40                                0.1% 

PMSF                                100μg/ml 

Protase inhibitor cocktail   1× 

Sodium orthovanadate       0.5mM 
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Cells were incubated on ice for 30 minutes in lysis buffer. After centrifugating for 10 minutes 

at 10,000×g, total protein concentration of the supernatant was determined by Bradford 

protein assay.  

3.14 Western blotting analysis 

Same amount of protein of samples were separated on 8% to 15% SDS-PAGE and  blotted 

onto PVDF membrane. After blocking the membrane in PBS containing 5% non-fat milk and 

0.1%Tween-20 for 1 hour at room temperature, the membrane was incubated with the primary 

antibody in 5% non-fat milk at 4°C overnight. The following primary antibodies were used: 

Phospho-eIF4E (Ser209, 1:1000 dilution), Phospho-mTor (Ser2481, 1:1000 dilution), 

Phospho-Mnk1 (Thr197/202, 1:1000 dilution), 4E-BP1(1:1000 dilution), 4E-BP2 (1:1000 

dilution); GATA-1 (C-20, 1:400 dilution), α-Tubulin (B-7, 1:1000 dilution). Next day, the 

membrane was washed three times with PBS containing 0.1% Tween-20 and incubated with 

corresponding secondary antibodies at room temperature for 1 hour.  Horseradish peroxidase-

conjugated secondary antibodies were used: donkey anti-rabbit (1:5000 dilution), sheep anti-

mouse (1:5000 dilution), donkey anti-goat (1:5000 dilution). The immunoreactive bands were 

visualized by enhanced chemiluminiscence. 

3.15 Real-time PCR 

Total RNA was isolated from 5 x 105 purified Ter119 + erythroblasts of spleen using RNeasy 

Mini Kit and digested with DNase I to remove contaminating genomic DNA. Total RNA was 

denatured at 65°C for 10 minutes and reverse-transcribed by using Superscript II reverse 

transcriptase and random primers. Real-time polymerase chain reaction (PCR) was carried out 

using SYBR green fluorescent DNA labeling with the Light Cycler 3.5 instrument and the 

software version 3.5.3. gapdh was used as endogenous control. The PCR condition was as 

follows: initial denaturation at 95° for 30 seconds, then 45 cycles of the following were 

carried out (20 seconds at 95°C, 20 seconds at 60°C for GAPDH or at 56°C for mouse gata-1, 

20 seconds at 72°C). PCR products were analyzed by agarose gel electrophoresis. 

Quantification was performed using comparative CT method. Standard curve was obtained 

from serial dilutions of a cDNA control and the relative expression levels were normalized to 

those of GAPDH.  

The following primer sequences were used:  

mouse gata1:   forward:    ACTGGCCTACTACAGAGAAGC                                                                 

                         reverse:     GTAGAGTGCCGTCTTGCCATA .  
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mouse gapdh:  forward:    AATGTGTCCGTCGTGGATCTGA,                                                                

                         reverse:     GATGCCTGCTTCACCACCTTCT 

3.16 Statistics 

Statistical analysis was performed by 2-tailed, paired and unpaired Student’s t-test. A P value 

less than 0.05 was considered significant.  

 

 

 

 

 



4 Results 

I investigated the role of 4E-BP1 and 4E-BP2 in hematopoiesis using 4E-BP1 and 4E-BP2 

individual knock out mice (4E-BP1-/-, 4E-BP2-/-) and 4E-BP1,2 compound knock out mice 

(4E-BP1,2-/-).  

4.1 Unaffected hematopoiesis of 4E-BPsKO mice 

4.1.1 Adult hematopoiesis 

The adult hematopoietic cell lineages are developed from hematopoietic stem cells (HSCs) 

which possess self-renewal ability and mainly maintain in bone marrow. HSCs give rise to 

multipotent progenitors (MPPs), which have lost the ability to self-renew, retaining their 

multi-lineage developmental potential. MPPs generate common lymphoid progenitors (CLP) 

and myeloid progenitors (CMP). Common progenitors further differentiate into lineage-

restricted precursors, finally into mature blood cells including erythrocyte, granulocyte, 

monocyte/macrophage, megakaryocyte, platelets as well as B and T lymphoid cells 

(Schwarzenberger, Kolls et al. 2002) (Shizuru, Negrin et al. 2005) (Figure 10).  

 

Fig.10. Adult hematopoiesis 
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HSCs, which possess self-renewal ability and multi-lineage differentiation potential, give rise to multipotent 
progenitors (MPPs), which have lost the ability to self-renew, retaining their multi-lineage developmental 
potential. MPPs differentiate into CLP and CMP. Common progenitors further differentiate into lineage-
restricted precursors, finally to mature blood cells including erythrocyte, granulocyte, monocyte/macrophage, 
megakaryocayte as well as B and T lymphoid cells.  

4.1.2 Unaffected peripheral blood parameters of different lineages in 

4E-BpsKO mice 

I examined hematopoiesis of 4E-BPsKO mice. First I found that the peripheral blood 

parameters of myeloid lineage and lymphoid lineage of 4E-BPs KO mice were unaffected 

including erythroid lineage parameters, which were normal as well compared to those of 

control mice (Table 2,3). 

Tab. 3     peripheral blood erythroid parameters 

 WT 4E-BP1,2-/- 4E-BP2-/- 4E-BP1-/- 

Parameters n=17 n=20 n=13 n=13 

RBC(× 106/mm3) 10,54 ± 0,20 10,91 ± 0,19 10,83 ± 0,16 10,88 ± 0,33 

Hemoglobin(g/dl) 16,71 ± 0,33 16,88 ± 0,32 17,19 ± 0,29 17,25 ± 0,48 

Hematocrit(%) 56,38 ± 1,31 58,76 ± 1,21 58,35 ± 1,01 58,12 ± 1,96 

MCV(μm3) 53,41 ± 0,52 53,80 ± 0,41 54,00 ± 0,32 53,31 ± 0,38 

MCH(pg) 15,87 ± 0,15 15,46 ± 0,11 15,86 ± 0,11 15,88 ± 0,23 

MCHC(g/dl) 29,67 ± 0,22 28,77 ± 0,22 29,44 ± 0,20 29,78 ± 0,43 

Reticulocytes(%) 2,16 ± 0,29(n=9) 2,37 ± 0,18(n=15) 2,53 ± 0,24(n=11) 2,13 ± 0,36(n=5) 

P  value  - > 0.05 > 0.05 > 0.05 

P value represented Student’s t-test of the peripheral blood erythroid parameters of 4E-BPsKO mice compared to 
control mice; erythrocyte/red blood cell (RBC); mean corpuscular volume (MCV); mean corpuscular 
hemoglobin (MCH); mean corpuscular hemoglobin concentration (MCHC); mice were 2-12 months old.  

These results indicated that disruption of 4E-BPs did not affect mature blood cells in 

peripheral blood. Next we examined the precursors and progenitors of myeloid and lymphoid 

lineages in the bone marrow of 4E-BPsKO mice. 

4.1.3 Unaffected B lymphocyte frequencies in the bone marrow of 4E-

BPsKO mice 

B220, which is also known as CD45R, is expressed on all B lymphocytes, resting and 

activated, as early as the pro-B cell stage of differentiation. As a cell surface receptor, the 

B220 antibody is used as a lineage marker of B lymphocytes. I examined B lymphocytes in 

bone marrow of 4E-BPsKO mice monitored by the lineage surface antigen B220 using flow 
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cytometry. I found that disruption of 4E-BPs did not affect B lymphocytes in 4E-BPsKO mice 

(P > 0.05) (Figure 11). 
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Fig.11. Unaffected B220 positive lymphocytes frequencies in the bone marrow of 4E-BPsKO mice. (A) An 

example of bone marrow B220 positive lymphocytes flow cytometry analysis of 4E-BPsKO and control mice. 

Numbers in quadrants (bottom) indicated percentages of B220 positive lymphocytes (upper and lower right) in 

bone marrow cells. (B) Results (mean ± s.e.m) obtained from 4E-BPsKO mice (n = 5) and control mice (n = 5).  

4.1.4 Unaffected T lymphocyte differentiation in the bone marrow of 

4E-BPsKO mice 

T lymphocyte is another subpopulation of lymphocyte. CD4 and CD8 are expressed on the T 

lymphocytes.  CD4+CD8+ double positive cells are the late stage immature T lymphocytes. 

CD4+ cells are the MHC class II ⎯ restricted T lymphocytes, including most T helper cells  

and immunosuppressive regulatory T cells and a subset of NK-T cells. CD8+ cells are MHC 

class I ⎯ restricted T lymphocytes, including cytotoxic T cells. I examined T lymphocytes in 

the bone marrow of 4E-BPsKO mice monitored by the lineage surface antigens CD4 and CD8 

using flow cytometry. I found unaffected T lymphocyte differentiation in 4E-BPsKO mice 

(Figure 12) 
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Fig.12. Unaffected T lymphocytes differentiation in the bone arrow of 4E-BPsKO mice.(A) An example of 

bone marrow T lymphocytes flow cytometry analysis of 4E-BPsKO and control mice. Numbers in quadrants 

(bottom) indicated percentages of CD4+CD8- T lymphocytes (upper left); CD4+CD8+ T lymphocytes (upper 

right); CD4-CD8+ T lymphocytes (lower right) in bone marrow cells. (B),(C),(D) Results (mean ± s.e.m) 

obtained from 4E-BPsKO mice (n = 4) and control mice (n = 5). (B) the percentages of CD4+CD8- T 

lymphocytes in bone marrow cells of 4E-BPsKO and control mice. (C) the percentages of CD4-CD8+ T 

lymphocytes in bone marrow cells of 4E-BPsKO and control mice.(D) the percentages of CD4+CD8+T 

lymphocytes in bone marrow cells of 4E-BPsKO and control mice. 

4.1.5 Unaffected myeloid precursors in the bone marrow of 4E-BPsKO 

mice 

Gr-1 (Ly6G) is expressed on myeloid precursor cells, granulocytes, and transiently on 

monocytes. The CD 11b receptor (Mac-1) is αMβ2 integrin that is expressed on the surface of 

monocyte/macrophages, dendritic cells (DC) and granulocytes. CD11b+Gr-1+ cells display 

features of undifferentiated myeloid cells and contain precursors of different myeloid cell 

subsets. These cells have been termed immature myeloid cells. I examined myeloid precursors 

and mature myeloid cells in the bone marrow of 4E-BPsKO mice monitored by the lineage 

surface antigens CD11b and Gr-1 using flow cytometry. I found unaffected myeloid cells 

differentiation in 4E-BPsKO mice compared to the control mice (Figure 13) 
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Fig.13. Unaffected myeloid cells differentiation in the bone marrow of 4E-BPsKO mice. (A) An example of 

bone marrow myeloid cells flow cytometry analysis of 4E-BPsKO and control mice. Numbers in quadrants 

(bottom) indicated percentages of CD11b+Gr-1- myeloid cells (upper left); CD11b+Gr-1+ myeloid cells (upper 

right); CD11b-Gr-1+ myeloid cells (lower right) in bone marrow cells. (B),(C),(D) Results (mean ± s.e.m) 

obtained from 4E-BPsKO mice (n = 5) and control mice (n = 5). (B) the percentage of Gr-1+CD11b- myeloid 

cells in the bone marrow of 4E-BPsKO and control mice. (C) the percentage of Gr-1-CD11b+ myeloid cells in 

the bone marrow of 4E-BPsKO and control mice. (D) the percentage of Gr-1+CD11b+ myeloid cells in the bone 

marrow of 4E-BPsKO and control mice. 

4.1.6 Unaffected myeloid colony forming unit granulocyte/monocyte 

(CFU-GM) in the bone marrow of 4E-BPsKO mice 

Next I performed colony forming assay to examine the functions of myeloid lineage 

progenitors. I found that CFU-GM (CFU-GM, CFU-G, CFU-M) frequencies in bone marrow 

of 4E-BPsKO mice were similar to those of control mice (Figure 14). 
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Fig.14. Unaffected CFU-GM frequencies in the bone marrow of 4E-BPsKO mice.The results of CFU-GM 

frequencies (mean ± s.e.m) in the bone marrow of 4E-BPKO and control mice obtained from three mice of each 

genotype (n = 3). 

4.1.7 Erythropoiesis 

The earliest erythroid-committed progenitor identified ex vivo -- the burst-forming erythroid 

unit (BFU-E). BFU-E cells divide and further differentiate into rapidly dividing erythroid 

colony-forming units (CFU-Es). Both of these 2 types of progenitors are identified by colony 

forming assays. BFU-E colonies take 15 days (human) or 7 to 10 days (mouse) to form in 

culture, whereas CFU-E colonies take 7 days (human) or 2 days (mouse). CFU-E progenitors 

undergo 3 to 5 divisions as they differentiate through proerythroblasts to erythroblasts that can 

be monitored by expression of the cell surface markers CD71 and TER119. Finally, the 

erythroblasts extrude their nuclei (enucleation) and become reticulocytes, which further expel 

all organelles and detach from their microenvironment to form mature circulating erythrocytes 

(Figure 15).  
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Fig.15. Adult Erythropoiesis. The earliest erythroid-committed progenitor identified ex vivo is the BFU-E. 

BFU-E cells divide and further differentiate into CFU-E (photos represent BFU-E and CFU-E forming in 

methylcellulose medium). CFU-E progenitors undergo 3 to 5 divisions as they differentiate through 

proerythroblasts to erythroblasts that can be monitored by expression of the cell surface markers CD71 and 

TER119. Finally, the erythroblasts extrude their nuclei (enucleation) and become reticulocytes, which further 

expel all organelles and detach from their microenvironment to form mature circulating erythrocytes. 
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Fig.16. Unaffected erythroblasts in bone arrow of 4E-BPsKO. (A) An example of bone marrow erythroblasts 

flow cytometry analysis of 4E-BPsKO and control mice. Numbers in the boxed areas indicated percentages of 

gated Ter119 positive erythroblasts in bone marrow cells.(B) Results (mean ± s.e.m) of 4E-BPsKO and control 

mice obtained from 5 mice of each genotypes (n = 5). 

4.1.8 Unaffected erythroblasts in spleen of 4E-BPsKO mice 

Erythropoiesis occurs not only in bone marrow but also in spleen. Next I examined spleen 

erythroblasts monitored by CD71 and Ter119 with flow cytometry analysis and defined four 

populations (R1-R4) with specific staining characteristic: R1, pro-erythroblasts 

(Ter119lowCD71hi); R2, early basophilic erythroblast (Ter119hiCD71hi); R3 and R4, late 

erythroblast (Ter119hiCD71med and Ter119hiCD71low) (Socolovsky, Nam et al. 2001). I found 

that spleen erythroblasts differentiation was unaffected compared with control mice as well. 

(Table 4, Figure 17).  

Tab. 4     Differentiation of spleen erythroblasts 

 WT 4E-BP1,2-/- P value 4E-BP2-/- P value 4E-BP1-/- P value 

 ( n=5 ) ( n=5 )  ( n=5 )  ( n=4 )  

R1 0,05±0,01 0,04±0,01 >0.05 0,04±0,01 >0.05 0,05±0,01 >0.05 

R2 3,61±0,57 3,73±0,45 >0.05 3,88±0,90 >0.05 3,62±0,61 >0.05 

R3 6,17±0,54 6,06±0,17 >0.05 6,36±0,53 >0.05 6,80±0,85 >0.05 

R4 25,78±3,41 25,78±3,13 >0.05 26,96±2,91 >0.05 23,50±1,67 >0.05 

P value represented Student’s test of erythroblasts frequencies in splenocytes of 4E-BPsKO mice compared to 
control mic 
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Fig.17. Unaffected spleen erythroblasts in 4E-BPsKO mice. This figure is an example of spleen 

erythroblasts flow cytometry of 4E-BPsKO and control mice. Numbers in the boxed areas indicated percentages 

of gated cells in each region (R1-R4). 

4.1.9 Unaffected frequencies of erythroid progenitors CFU-E and BFU-

E in the bone marrow and spleen of 4E-BPsKO mice 

Next I examined the function of erythroid progenitors in the bone marrow of 4E-BPsKO 

mice. I found that erythroid committed progenitors CFU-E and BFU-E frequencies in 4E-

BPsKO mice were similar to those of control mice (Figure 18,19).   
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Fig.18. Unaffected frequencies of erythroid progenitors CFU-E in 4E-BPsKO mice.(A) The results of CFU-

E frequencies (mean ± s.e.m) in bone marrow of 4E-BPsKOand control mice obtained from three mice of each 

genotype (n = 3). (B) The results of CFU-E frequencies (mean ± s.e.m) in the spleens of 4E-BP1,2-/- and control 

mice obtained from five mice of each genotype (n = 5). 
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Fig.19. Unaffected frequencies of erythroid progenitors BFU-E  in 4E-BPsKO mice. (A) The results of 

BFU-E frequencies (mean ± s.e.m) in the bone marrow of 4E-BPsKO and control mice obtained from three mice 

of each genotype (n = 3). (B) The results of BFU-E frequencies (mean ± s.e.m) in the spleens of 4E-BP1,2-/- and 

control mice obtained from five mice of each genotype (n = 5). 

The results of peripheral blood analysis, flow cytometry analysis of bone marrow, spleen 

restricted lineages precursors and colony forming assay of bone marrow, spleen progenitors 

suggested that disruption of 4E-BPs did not affect hematopoiesis.  

4E-BPs have been suggested to be involved in stress response. Although disruption of 4E-BPs 

did not affect hematopoiesis, especially erythropoiesis, 4E-BPs might be involved in stress 

erythropoiesis. 90% of adult murine erythroid progenitors are in the bone marrow and 10% in 

the spleen. However, during erythropoietic stress, erythropoiesis occurs mainly in the spleen 

(Richmond, Chohan et al. 2005; Ney 2006). 

4.2 Upregulation of 4E-BP1, 4E-BP2 expression and 4E-BP1 

phosphorylation in spleen erythroblasts in response to PHZ 

treatment 

Phenylhydrazine (PHZ) induced erythropoietic stress is used to study the stress 

erythropoiesis. Therefore, I challenged the mice with PHZ that caused acute hemolytic 

anemia. In response to the challenge, erythroid progenitors expansion would occur in spleen 

and the expansion peaks at 36 to 48 hours after anemia induction.  

First I examined whether and when PHZ treatment affected 4E-BP1, 4E-BP2 protein 

expression. I found that 1 hour after PHZ treatment, 4E-BP1, 4E-BP2 were upregulated in 

erythroblasts. At 3-hour, 6-hour and 9-hour, the upregulation was continued (Figure 20A). The 

phosphorylation of 4E-BP1 was upregulated 3 hours after PHZ treatment as well. I further 

examined 4E-BP1 and 4E-BP2 expressions in 4E-BPs mutants. I found that expression of 4E-
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BP1 in 4E-BP2-/- erythroblasts and 4E-BP2 in 4E-BP1-/- erythroblasts were upregulated in 

response to PHZ treatment. However, the expression level of 4E-BP1 in 4E-BP2-/- 

erythroblasts and that of 4E-BP2 in 4E-BP1-/- erythroblasts were similar to those of control 

erythroblasts in both normal and stress erythropoiesis (Figure 20B). 

 

 

Fig.20. Upregulation of 4E-BP1, 4E-BP2 expression and 4E-BP1 phosphorylation in spleen 
erythroblasts in response to PHZ treatment.(A) Expression of 4E-BP1, 4E-BP2 and 4E-BP1 phosphorylation 
in response to PHZ treatment in time-dependent manner in control erythroblasts. γ indicated the 
unphosphorylated 4E-BP1; α,β were the phosphorylated 4E-BP1. α-Tubulin was the loading control. The 
erythroblasts from 3 to 5 wild-type mice were pooled for each time point. (B) Expression of 4E-BP1 and 4E-BP2 
in 4E-BPsKO and control erythroblasts in both normal erythropoiesis and stress erythropoiesis. α-Tubulin was 
the loading control. Data obtained from two independent experiments. The erythroblasts from 3 to 5 mice were 
pooled for each genotype in each experiment.  

4.3 Activation of kinase mTOR in spleen erythroblasts in 

response to PHZ treatment 

MTOR signaling pathway regulates translation through 4E-BPs and S6K. I examined whether 

and when mTOR signaling pathway was activated by PHZ treatment. I found that 1 hour after 

PHZ treatment, mTOR phosphorylation was upregulated in erythroblasts (Figure 21), which 

upregulated 4E-BP1 phosphorylation (Figure 20). 
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Fig.21. Activation of mTOR in spleen erythroblasts in response to PHZ treatment. Kinetics of mTOR 

phosphorylation in response to PHZ treatment in control spleen erythroblasts. α-Tubulin was the loading control. 

The erythroblasts from 3 to 5 wild-type mice were pooled for each time point.  

These results indicated the translation regulatory machinery mTOR-4E-BPs was activated in 

response to PHZ induced erythropoietic stress. 

4.4 Reduction of proliferation rate of 4E-BP1,2-/- erythroblasts 

ex vivo 

To address whether 4E-BPs were crucial for erythroblast proliferation, I cultivated 

erythroblasts obtained from the bone marrow of 4E-BP1,2-/-  and control mice in serum- free 

medium plus cytokines including stem cell factor (SCF), human recombinant erythropoietin 

(hEPO), insulin-like growth factor (IGF-1) and dexamethasone (DEX) to examine their 

proliferation rate under erythropoietic stress like condition (see method “ cultivation of mouse 

erythroblasts”). I found that erythroblasts of 4E-BP1,2-/-  proliferated 12.3 folds from days 4 to 

7, whereas erythroblasts of control proliferated 15,5 folds (Figure 22). This result indicated 

that 4E-BP1 and 4E-BP2 were required for erythroblasts proliferation ex vivo. 

4.5 Disrupted erythropoietic stress response of 4E-BP1,2-/- 

mice 

4.5.1 Reduction of reticulocyte percentages in peripheral blood of 4E-

BP1,2-/- mice 48 hours after PHZ treatment 
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Fig.22. Reduction of proliferation rate of 4E-BP1,2 -/- erythroblasts ex vivo.Erythroblasts of 4E-BP1,2-/- and 
control mice were cultivated in serum-free medium supplemented with cytokines SCF, hEPO, IGF-1and DEX. 
Cells were counted daily from days 4 to 7 and cumulative cell numbers were determined. Data was one 
experiment of two independent experiments. 

population is used to assess erythopoietic rate. I found that 48 hours after PHZ treatment, the 

percentages of reticulocytes in blood of both mutant and control mice were increased 

compared with normal situation (2%-3%). However, the percentage of reticulocytes of 4E-

BP1,2-/- mice were lower: 4E-BP1,2-/- , 27.86% ± 1.28%, versus control , 40.69% ± 3.42% ( P 

< 0.05 ) (Figure 23). This result indicated that 4E-BP1 and 4E-BP2 were required for the 

proliferation of reticulocytes in stress erythropoiesis.  

Fig.23. Reduction of reticulocyte percentages in peripheral blood of 4E-BP1,2-/- mice 48 hours after PHZ 

treatment. Results of reticulocyte percentages (mean ± s.e.m) in peripheral blood were from 4E-BP1,2-/- mice (n 

= 15) and control mice (n = 9). Data obtained from the pool of 4 independent 

 49



4.5.2 Reduction of spleen Ter119 hi erythroblasts percentages of 4E-

BP1,2-/- mice 48 hours after PHZ treatment 

I further quantitatively assessed erythroblasts in spleen using flow cytometry assay. The 

erythroblasts were stained with the transferrin receptor CD71 and erythroid specific cell 

surface antigen Ter119. I found that Ter119 high expression erythroblasts in 4E-BP1,2-/- were 

less than in control mice: 4E-BP1,2-/-, 25.38% ± 2.73%  versus control, 34.41%± 3.16%, ( P < 

0.05 ). No difference in size of spleen was observed between 4E-BP1,2-/- and control mice. 

Weight ratio of spleen to body of 4E-BP1,2-/-, 0.0129 ± 0.0014, versus control, 0.0136 ± 

0.0013 ( P > 0.05 ) (Figure 24). These results indicated that loss of 4E-BP1 and 4E-BP2 

inhibited the proliferation of erythroblasts in response to erythropoietic stress. 
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Fig.24. Reduction of spleen Ter119 hi erythroblasts percentages of 4E-BP1,2-/- mice 48 hours after PHZ 

treatment. (A) Erythroblasts results (mean ± s.e.m) were from 4E-BP1,2-/- mice (n = 12) and control mice (n = 

9). Data obtained from the pool of 5 independent experiments. (B) Weight ratio of spleen to body of 4E-BP1,2-/- 

and control mice was similar at same time point. Results (mean ± s.e.m) were from 4E-BP1,2-/- mice (n = 9) and 

control mice (n = 8). Data obtained from the pool of 2 independent experiments. (C) An example of spleen 

erythroblasts flow cytometry assay of 4E-BP1,2-/-  and control mice. Numbers in the boxed area indicated the 

percentages of Ter119 hi erythroblasts in splenocytes. 

4.5.3 Reduction of spleen CFU-E frequencies of 4E-BP1,2-/- mice 48 

hours after PHZ treatment 

I further examined whether spleen erythroid progenitors were affected by loss of 4E-BPs in 

response to erythropoietic stress using colony forming assay. I found that 48 hours after PHZ 

treatment, the CFU-E frequency of 4E-BP1,2-/- was lower than that of control: 4E-BP1,2-/-, 

176.80± 31.09 , versus control, 391.70 ± 49.58 ( P < 0.05 ). The BFU-E frequency of mutant 

was similar as that of the control: 4E-BP1,2-/-, 18.8 ± 1.11, versus control, 19,89 ± 1.38 ( P > 

0.05 ) (Figure 25). These results indicated that 4E-BP1 and 4E-BP2 were required for the 

proliferation of erythroid progenitors CFU-E, but not BFU-E, in response to erythropoietic 

stress.  
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Fig.25. Reduction of spleen CFU-E frequencies in 4E-BP1,2-/- mice 48 hours after PHZ treatment. (A) The 

results of CFU-E frequencies (mean ± s.e.m) were from 4E-BP1,2-/- mice (n = 6) and control mice (n = 9). Data 

obtained from the pool of 6 independent experiments. (B) Unaffected spleen BFU-E of 4E-BP1,2-/- mice 48 

hours after PHZ treatment. Results (mean ± s.e.m) were from 4E-BP1,2-/- mice (n = 5) and control mice (n = 9). 

Data obtained from the pool of 4 independent experiments. 

Taken together, these results indicated loss of 4E-BPs led to inefficient proliferation of 

erythroid progenitor CFU-E and erythroblasts ex vivo and in vivo, suggesting 4E-BPs were 

required for stress erythropoiesis. 4E-BP1 and 4E-BP2 are equally expressed in splenocytes. I 

induced hemolytic anemia in 4E-BP1-/- and 4E-BP2-/- mice using the same method to explore 

the individual function of 4E-BPs in stress erythropoiesis. 

4.6 Disrupted erythropoietic stress response of 4E-BP2-/- mice 

4.6.1 Reduction of proliferation rate of 4E-BP2-/- erythroblasts ex vivo, 

but not of 4E-BP1-/- erythroblasts 

Our ex vivo data showed that 4E-BP2-/- erythroblasts proliferated 12.8 folds from days 4 to 7, 

which was lower than that of control erythroblasts (15,5 folds), whereas 4E-BP1-/- 

erythroblasts proliferated 15.5 folds showing the same proliferation rate as that of control 
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erythroblasts (Figure 26). This result indicated that 4E-BP2 was required for the proliferation 

of erythroblasts ex vivo. 
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Fig.26. Reduction of proliferation rate of 4E-BP2-/-erythroblasts, but not of 4E-BP1-/- erythroblasts. 
Erythroblasts of 4E-BP1-/-, 4E-BP2-/- and control mice were cultivated in serum-free medium supplemented with 
cytokines SCF, hEPO, IGF-1 and DEX. Cells were counted daily from day 4 to 7 and cumulative cell numbers 
were determined. Data was one experiment of two independent experiments. 

4.6.2 Reduction of reticulocyte percentages in peripheral blood of 4E-

BP2-/- mice 48 hours after PHZ treatment 

Next I investigated the erythropoietic stress response of 4E-BP1-/- and 4E-BP2-/- mice in vivo.  

First I found that 48 hours after PHZ treatment, the reticulocyte percentages in the blood of 

4E-BP2-/- mice were lower than those of control mice. In contrast, the reticulocyte 

percentages in the blood of 4E-BP1-/- mice were similar to those of control mice: 4E-BP2-/-, 

26.53% ± 1,77% ( P < 0.05 ), 4E-BP1-/- , 37.07% ± 3,29% ( P > 0.05 ) , versus control , 

40.69% ± 3.42% (Figure 27). This result indicated that 4E-BP2 was required for the 

proliferation of reticulocytes in response to erythropoietic stress. 
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Fig.27. Reduction of reticulocyte percentages in 4E-BP2-/- peripheral blood, but not in 4E-BP1-/- mice 48 hours 

after PHZ treatment. The results of reticulocyte percentages (mean ± s.e.m) were from 4E-BP2-/- (n = 12), 4E-

BP1-/- (n = 9) and control mice (n = 9). Data obtained from the pool of 4 independent experiments.  

4.6.3 Reduction of spleen Ter119 hi erythroblasts percentages of 4E-

BP2-/- mice 48 hours after PHZ treatment 

Next I examined the spleen erythroblasts of 4E-BP1-/- and 4E-BP2-/- mice. We found that 

Ter119 high expression erythroblasts in 4E-BP2-/- mice were less than those in control: 4E-

BP2-/-, 26.99% ± 2.24% ( P < 0.05 ), versus control, 34.41% ± 3.16% . There was no 

significant difference between 4E-BP1-/- and control mice. 4E-BP1-/-, 34.29% ± 2.02% ( P > 

0.05 ). Weight ratio of spleen weight to body of 4E-BP1-/- , 4E-BP2-/- and control mice did not 

show significant difference. 4E-BP2-/-, 0.0127 ± 0.0013 ( P > 0.05 ), 4E-BP1-/-, 0.0136 ± 

0.0011 ( P > 0.05 ), versus control, 0.0136 ± 0.0013 (Figure 28). These results indicated that 

loss of 4E-BP2 inhibited the proliferation of erythroblasts in stress erythropoiesis. 
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Fig.28. Reduced percentages of spleen Ter119 hi erythroblasts of 4E-BP2-/- mice, but not of 4E-BP1-/- mice, 
48 hours after PHZ treatment. (A) The results of Ter119 high positive erythroblasts (mean ± s.e.m) were from 
4E-BP2-/- (n = 14), 4E-BP1-/- (n = 14) and control mice (n = 9). Data obtained from the pool of 5 independent 
experiments. (B) Similar weight ratio of spleen to body of 4E-BP1-/-, 4E-BP2-/- and control mice at same time 
point. Results (mean ± s.e.m) were from 4E-BP2-/- (n = 9), 4E-BP1-/- (n = 9) and  control mice (n = 8). Data 
obtained from the pool of 2 independent experiments. (C) An example of spleen erythroblasts flow cytometry 
assay of 4E-BP1-/-, 4E-BP2-/- and control mice. Numbers in the boxed area indicated the percentages of Ter119hi 
erythroblasts in splenocytes. 
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4.6.4 Reduction of spleen CFU-E frequencies of 4E-BP2-/- mice 48 

hours after PHZ treatment 

 

 

Fig.29. Reduction of spleen CFU-E frequencies of 4E-BP2-/- mice 48 hours after PHZ treatment. (A) The 
results of CFU-E frequencies (mean ± s.e.m) were from 4E-BP1-/- (n = 5), 4E-BP2-/- (n = 5) and control mice (n 
= 9). Data obtained from the pool of 2 independent experiments. (B) Spleen BFU-E frequencies of 4E-BP1-/- and 
4E-BP2-/- mice were unaffected 48 hours after PHZ treatment. The results of BFU-E frequencies (mean ± s.e.m) 
were from 4E-BP1-/- (n = 5), 4E-BP2-/- (n = 5) and control mice (n = 9). Data obtained from the pool of 2 
independent experiments. 

Taken together, these results indicated that loss of 4E-BP2 led to inefficient erythropoiesis 

which was analogous to 4E-BP1,2-/-. Remaining 4E-BP1 did not rescue the delayed response 

to erythropoietic stress of 4E-BP2-/- mice. However, 4E-BP1-/- mice showed normal response 

to erythropoietic stress, suggesting 4E-BP2 was required for stress erythropoiesis.  

4.7 Downregulated protein expression of GATA-1 in 4E-BP1,2-

/- and 4E-BP2-/- spleen erythroblasts 48 hours after PHZ 

treatment 

4E-BP1,2-/- and 4E-BP2-/- mice showed proliferation delay at late stage of erythroid lineage in 

response to erythropoietic stress. GATA-1 is the central transcription factor of erythroid 
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proliferation and terminal differentiation and two GATA-1 proteins are detected in human 

K562 and mouse MEL erythroid cell lines resulting from alternative translation initiation site 

usage (Calligaris, Bottardi et al. 1995). I examined GATA-1 expression in spleen erythroblasts 

under erythropoietic stress. Attenuated GATA-1 expression was found in 4E-BP1,2-/- and 4E-

BP2-/- erythroblasts. The attenuation was at the protein level, as the mRNA level was 

unaffected. These results suggested that loss of 4E-BP2 led to deregulation of GATA-1 

expression at protein level, indicated that the translation control mechanism is involved in the 

regulation of GATA-1 expression (Figure 30).  

 

 

Fig.30. Deregulated protein expression of GATA-1 in 4E-BP1,2-/- and 4E-BP2-/- spleen erythroblasts 48 
hours after PHZ treatment. (A) GATA-1 expression in 4E-BPsKO and control spleen erythrobasts under 
erythropoietic stress detected by Western Blot analysis. α-Tubulin was loading control. The erythroblasts from 3 
to 5 mice were pooled for each genotype in each experiment. (B) gata-1 transcripts level in 4E-BPsKO and 
control spleen erythroblasts under erythropoietic stress detected by real-time PCR. Values were relative to 
GAPDH transcripts. Results were from 5 mice for each genotype.  
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4.8 Activation of MNK1 and upregulation of eIF4E 

phosphorylation 48 hours after PHZ treatment 

The activity of eIF4E is regulated by 4E-BPs and phosphorylation. Deletion of 4E-BPs will 

increase the availability of translation factor eIF4E, which is then amenable phosphorylation. 

I examined the phosphorylation state of eIF4E. I found that eIF4E phosphorylation was 

enhanced in 4E-BPsKO erythroblasts in both normal erythropoiesis and stress erythropoiesis 

(Figure 31A). MNK is the only known eIF4E kinase in mammals. I examined its activation. I 

found that MNK1 phosphorylation was enhanced 1 hour after PHZ treatment. Until 9 hours, 

the phosphorylation was further enhanced gradually. These results implied that the activation 

of the MAP kinase signaling pathway upregulated eIF4E phosphorylation in PHZ induced 

erythropoietic stress (Figure 31B). 

 

 

Fig.31. Activation of MNK1 and upregulation of eIF4E phosphorylation 48 hours after PHZ treatment.(A) 
eIF-4E phosphorylation in 4E-BPsKO and control erythroblasts in normal erythropoiesis and stress 
erythropoiesis. α-Tubulin was used as loading control. Data obtained from three independent experiments. The 
erythroblasts from 3 to 5 mice were pooled for each genotype in each experiment. (B) Kinetics of MNK1 
phosphorylation in response to PHZ treatment in control erythroblasts. α-Tubulin was used as loading control. 
The erythroblasts from 3 to 5 wild-type mice were pooled for each time point.  
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5 Discussion and Outlook 

I used 4E-BP1 knock out, 4E-BP2 knock out and 4E-BP1,2 compound knock out mice to 

investigate the functions of 4E-BPs in hematopoiesis and stress erythropoiesis. I found that 

disruption of 4E-BP1 and 4E-BP2 did not affect hematopoisis. However, the response to 

phenylhydrazine induced erythropoietic stress of 4E-BP1,2 compound and 4E-BP2 knock out 

mice was delayed. Thus, 4E-BP2 is required for stress erythropoiesis, although 4E-BP1 and 

4E-BP2 are both predominantly expressed in the hematopoietic system. Our data not only 

addressed that 4E-BPs related translation regulation machinery were involved in the response 

to erythropoietic stress, but also indicates functional difference between 4E-BP1 and 4E-BP2.  

The role of 4E-BPs as the mediators of stress response has been investigated in vivo. 4E-

BP1,2 compound knock out mice and d4E-BP null Drosophila show deficient adipogenesis in 

response to adipogenetic stress (Le Bacquer, Petroulakis et al. 2007) (Teleman, Chen et al. 

2005). 4E-BP2 is predominantly expressed in brain. 4E-BP2 knock out mice display impaired 

spatial learning, memory function (Banko, Poulin et al. 2005). I did not find  hematopoiesis 

defect in 4E-BPs knock out mice. However, I observed that the expression levels of 4E-BP1 

and 4E-BP2 were upregulated rapidly starting from one hour after phenylhydrazine treatment. 

MTOR, the upstream regulator of 4E-BPs, was activated as well. Under stress situations, for 

example, hypoxia, nutrition starvation and low energy, mTOR integrates various signaling 

pathways to regulate gene expression. Our results indicated that mTOR-4E-BPs signaling 

pathway was involved in the response to phenylhydrazine induced acute hemolytic anemia. 

The response to phenylhydrazine induced hemolytic anemia requires rapid proliferation of 

late erythroid progenitors that is mediated by the glucocorticoid receptor (Wessely, Deiner et 

al. 1997) (Bauer, Tronche et al. 1999). I found that 4E-BP1,2 compound knock out mice 

showed reduced erythroid progenitors (CFU-E) and precursors (erythroblasts) in spleen as 

well as reduced peripheral blood reticulocytes proportion in response to phenylhydrazine 

induced erythropoietic stress. Reduced proliferation rate of erythroblasts, which were 

cultivated in erythropoietic stress analogue medium in vitro, was observed as well. I observed 

mild stress erythropoiesis defect. The reason could be that the effect of 4E-BP3 could not be 

absolutely excluded although 4E-BP1 and 4E-BP2 were the dominant 4E-BP proteins in 

hematopoietic sytem (Tsukiyama-Kohara, Poulin et al. 2001). It might play compensatory role 

in hemolytic anemia. A 4E-BP2 and 4E-BP3 compound knock out mice might exhibit a more 

severe phenotype. On the other hand, the alternate factors that are not known could partly 

compensate for the functions of 4E-BPs in erythropoiesis. These data implied that 4E-BPs 

play a role in the proliferation of erythroid lineage cells under stress situation in vivo. 
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Although 4E-BP1 and 4E-BP2 share the same conserved 15 amino acids eIF4E interaction 

motif and 56% identity of amino acids (Tsukiyama-Kohara, Vidal et al. 1996), the tissue 

expression discrepancy implies their functional difference (Tsukiyama-Kohara, Poulin et al. 

2001). To assess the contribution of 4E-BP1 and 4E-BP2 in stress erythropoiesis, I used the 

same method to challenge the 4E-BP1 knock out mice and 4E-BP2 knock out mice. I found 

that 4E-BP2 knock out mice exhibited similar defect of stress erythropoiesis in vivo and lower 

erythroblasts proliferation rate in vitro as those of 4E-BP1,2 compound knock out mice. 

However the response of 4E-BP1 knock out mice to erythropoietic stress and their 

erythroblast proliferation rate in vitro were similar as those of control mice. The reason could 

be that 4E-BP1 has been suggested to work as a metabolic brake that is activated to control fat 

metabolism in stress adipogenesis. Fat, glucose metabolic and oxidative stress resistance 

defect of 4E-BP null flies and 4E-BP1,2 compound knock out mice imply 4E-BP’s “energy 

brake” function. Based on our results, 4E-BP2 is the major regulator in the hemolytic anemia, 

thus the existence of 4E-BP2 in 4E-BP1 knock out mice let them to respond to erythropoietic 

stress properly. These results suggested 4E-BP2 was required for stress erythropoiesis and 

implied that in addition to a general translation regulation, 4E-BP1 or 4E-BP2 could confer 

specific downstream gene translation regulation individually.  

It would be very interesting to further investigate the regulatory mechanism of the tissue 

specificities of 4E-BP1 and 4E-BP2. Additionally, 4E-BPs related translation regulatory 

machinery might play roles in embryonic hematopoiesis as well. The functions of 4E-BPs in 

erythroid lineage differentiation are not clear at the moment. Epo-induced cultivated 

erythroblast differentiation may supply a good experimental system to address this question 

and new erythroid lineage specific regulators may be identified. 

GATA-1 plays a central role in erythropoiesis. It belongs to a family of transcription factors 

with two conservative zinc finger DNA-binding motifs (Ko and Engel 1993). Loss of GATA-

1 results in fetal embryonic anemia. In vitro colony forming assay and differentiation studies 

of GATA-1 deficient embryonic stem cellls have indicated that GATA-1 deficiency results in 

differentiation arrest at pro-erythroblast stage and undergo rapid apoptosis (Pevny, Simon et 

al. 1991; Weiss, Keller et al. 1994; Weiss and Orkin 1995; Fujiwara, Browne et al. 1996). Two 

GATA-1 proteins are detected in human K562 and mouse MEL erythroid cell lines resulting 

from alternative translation initiation site usage. Full-length protein is not detected in E8.5 

mouse embryo, whereas the low molecular weight GATA-1 isoform is detected. Both proteins 

are detected in fetal liver (Calligaris, Bottardi et al. 1995). This study suggests that two 

GATA-1 proteins play different functions in embryonic hematopoiesis. So far no evidence 
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indicates the existence of regulatory elements in untranslated region of GATA-1 mRNA. I 

only found decreased full-length GATA-1 expression in erythroblasts of 4E-BP1,2 compound 

knock out and 4E-BP2 knock out mice. This abrogated expression was at the protein level. 

Short form of GATA- 1 was not detected in both mutant and control erythroblasts (data not 

shown). I did not find reduced GATA-1 transcripts level in 4E-BP1,2 compound knock out 

and 4E-BP2 knock out erythroblasts. Therefore, my result suggested that disruption of 4E-

BP2 resulted in deregulation of GATA-1 mRNA translation, leading to the reduction of 

proliferation rate of erythroid progenitors and precursors, thus implied that translation 

regulation was involved in GATA-1 expression regulation. It will be reasonable to investigate 

whether regulatory elements exist in untranslated region of GATA-1 mRNA. 

4E-BPs regulate translation initiation rate through regulating the activity of mRNA cap 

structure binding protein eIF4E. The activity of eIF4E is regulated by the phosphorylation 

through MAP kinase–interacting protein kinase 1/2 (MNK1/2) as well. I found upregulated 

eIF4E phosphorylation in erythropoietic stress compared to in normal erythropoiesis in 

control mice. The reason could be that MNK1 was activated. I did find increased MNK1 

phosphorylation after phenylhydrazine treatment. Increased eIF4E and MNK1 

phosphorylation are found in mouse hippocampus as well when it is stimulated with increased 

amount of stimulation delivery (Banko, Poulin et al. 2005). My results implied that the 

signaling through kinase MNK1 was activated resulting in the upregulation of eIF4E 

phosphorylation in phenylhydrazine induced erythropoietic stress.   

The phosphorylation of eIF4E in 4E-BPKO erythroblasts was higher than that of control 

erythroblasts. The reason could be that deletion of 4E-BPs released more eIF4E that was then 

amendable for phosphorylation. The effect of phosphorylated eIF4E on translation rate is not 

clear. Mammalian eIF4E is phosphorylated in response to extracellular stimuli and stress that 

enhance or abrogate translation rate and protein synthesis (Kleijn, Scheper et al. 1998; 

Gingras, Raught et al. 1999; Raught and Gingras 1999; Tsukiyama-Kohara, Poulin et al. 2001; 

Banko, Poulin et al. 2005; Morley and McKendrick 1997). Phosphorylation of eIF4E is 

required for the development of Drosophila (Lachance, Miron et al. 2002). Data presented 

here indicated that enhanced eIF4E phosphorylation could be responsible for lower GATA-1 

expression, however, whether this is a direct effect still need to explore.  

4E-BP and ageing related HSC function 

Besides the function of 4E-BPs in stress erythropoiesis, I observed reduced HSCs in the 

ageing 4E-BP1,2 knock out mice compared to control mice as well. HSCs exhaustion is 
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related to ageing. The mechanism by which the HSCs maintain activity of cell production 

throughout the life of the animal and escape from the risk of damage from long replicative 

histories is assumed to be “clonal succession”. The majority of the stem cells are maintained 

in a quiescent state. One or at most several stem cells supply differentiated cells 

simultaneously. In this way stem cells would replicate only when they assume that the role of 

an active clone is exhausted. Thus, the strategy of clonal succession supposes that the stem 

cell population will decrease with age when the numbers of used clones are increased. Crises 

during a lifetime, which require increased generation of differentiated cells, accelerate the rate 

of succession (Cudkowicz, Upton et al. 1964; Kay 1965; Harrison 1975; Bell and Van Zant 

2004).  

4E-BP and eIF4E are involved in the lifespan of Drosophila and C. elegans (Table 1). 

Upstream open reading frame (uORF) has been suggested to be involved in promoting 

translation at alternative downstream start sites to express truncated C/EBPα, C/EBPβ and 

stem cell leukemia factor (SCL). EIF4E and eIF-2 enhance truncated C/EBPα, C/EBPβ 

expression through uORF. Rapamycin inhibit the expression of truncated C/EBPα, C/EBPβ 

(Calkhoven, Muller et al. 2003). The uORF of SCL mutant mice showed enhanced self-

renewal function of HSC (Mo et al. unpublished). PTEN is a negative regulator of the 

signaling through PI3K. Pten deletion causes the generation of transplantable leukemia-

initiating cells and deletion of normal HSCs in mice. Rapamycin not only depletes leukemia-

initiating cells, but also restores normal HSC function (Yilmaz, Valdez et al. 2006). These 

studies imply that translation regulation is involved in HSC function.  

Thus we assumed that the defect of 4E-BPs might affect the pool of HSC. Strikingly, using 

flow cytometry we found that HSC number in the bone marrow of old (> 9m) 4E-BP1,2 

compound knock out mice was decreased compared to that of control mice. However, in 

young mice (< 9m), the number of HSC in 4E-BP1,2 compound knock out mice was similar 

as that of control mice (data not shown). Although this observation need to be further 

explored, at least, it implied that translation control might be involved in ageing related HSC 

exhaustion. 

Anemia in a significant proportion of the human population is not easily explained by the 

factors such as iron or folate deficiencies (Balducci and Carreca 2003; Ershler, Nifontova et 

al. 2003; Rothstein 2003). Unexplained anemia accounts for nearly half of those seen in elder 

population as well (Penninx, Guralnik et al. 2003; Cesari, Pahor et al. 2005). My results 

suggested that the mutation analysis of 4ebp and eif4e in patients who suffered from 

unexplained anemia might provide a possible explanation.  
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In conclusion, I have found that deletion of 4E-BP2 deregulated erythroid specific 

transcription factor GATA-1 expression, leading to stress erythropoiesis defect in 4E-BP2 

knock out and 4E-BP1,2 compound knock out mice. These results indicated that 4E-BP2 was 

required for stress erythropoiesis and suggested that 4E-BP2 related translation regulation 

machinery was involved in hematopoietic response to environmental stress. 
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