40 research outputs found

    Effect of Cl/S and Na interaction on ash deposition mechanism at the inlet of Shell gasifier syngas cooler

    Get PDF
    The Shell dry pulverized coal pressurized gasification is one of the important technologies for the clean and efficient utilization of coal. Ash deposition at the inlet of the syngas cooler caused by alkali metal compounds is the main reason for the unscheduled shutdown of the gasifier. The effect of Cl/S and Na interaction on ash deposition is studied by adding different contents of Na, Cl and S to the raw fly ash. The ash deposition experiment is conducted by using the deposition probe in the self-built high temperature vertical furnace. The ash deposition behavior is studied by separating it into inner layer and the outer layer. The mass changes of the inner and outer ash deposits are discussed. The physicochemical properties of the inner and outer ash deposits are compared and analyzed by means of ICP-MS, IC, SEM-EDS and XRD. The influence of the interaction among elements such as Cl, S and Fe on the ash deposition behavior is obtained. The results show that the mass of inner ash deposits increases with time. The addition of compounds containing S reduces the mass of both the inner and outer ash deposits. And the mass of outer ash deposits decreases with time. The Na in the form of aluminosilicate promotes the growth of ash deposit in the outer layer. The Cl is enriched in the initial viscous layer in the form of alkali metal chloride. The existence of S slows down the pipeline dust deposition. In the presence of Cl and S, the Fe reacts with Si, Al and Na and generates a variety of low temperature eutectic, promoting the melting of inner and outer ash deposition. The formation mechanism of ash deposit at the inlet of the Shell gasifier syngas cooler is as follows: firstly, under the interaction among the Na, Cl, Si and Al, the alkali metal chloride and aluminosilicate deposit in the inner layer. At the same time, the existence of Cl and S combine with Fe and Na to form Fe-O-Si, Fe-O-S and Fe-Na-O-Al-S eutectic. Then, the melting of aluminosilicate and various low temperature eutectic increase the size of ash particles and promote the further growth of ash deposition

    Ataluren stimulates ribosomal selection of near-cognate tRNAs to promote nonsense suppression

    Get PDF
    A premature termination codon (PTC) in the ORF of an mRNA generally leads to production of a truncated polypeptide, accelerated degradation of the mRNA, and depression of overall mRNA expression. Accordingly, nonsense mutations cause some of the most severe forms of inherited disorders. The small-molecule drug ataluren promotes therapeutic nonsense suppression and has been thought to mediate the insertion of near-cognate tRNAs at PTCs. However, direct evidence for this activity has been lacking. Here, we expressed multiple nonsense mutation reporters in human cells and yeast and identified the amino acids inserted when a PTC occupies the ribosomal A site in control, ataluren-treated, and aminoglycoside-treated cells. We find that ataluren\u27s likely target is the ribosome and that it produces full-length protein by promoting insertion of near-cognate tRNAs at the site of the nonsense codon without apparent effects on transcription, mRNA processing, mRNA stability, or protein stability. The resulting readthrough proteins retain function and contain amino acid replacements similar to those derived from endogenous readthrough, namely Gln, Lys, or Tyr at UAA or UAG PTCs and Trp, Arg, or Cys at UGA PTCs. These insertion biases arise primarily from mRNA:tRNA mispairing at codon positions 1 and 3 and reflect, in part, the preferred use of certain nonstandard base pairs, e.g., U-G. Ataluren\u27s retention of similar specificity of near-cognate tRNA insertion as occurs endogenously has important implications for its general use in therapeutic nonsense suppression

    Altered Brain Function in Treatment-Resistant and Non-treatment-resistant Depression Patients: A Resting-State Functional Magnetic Resonance Imaging Study

    Get PDF
    ObjectiveIn this study, we used amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) to observe differences in local brain functional activity and its characteristics in patients with treatment-resistant depression (TRD) and non-treatment-resistant depression (nTRD), and to explore the correlation between areas of abnormal brain functional activity and clinical symptoms.MethodThirty-seven patients with TRD, 36 patients with nTRD, and 35 healthy controls (HCs) were included in resting-state fMRI scans. ALFF and ReHo were used for image analysis and further correlation between abnormal brain regions and clinical symptoms were analyzed.ResultsANOVA revealed that the significantly different brain regions of ALFF and ReHo among the three groups were mainly concentrated in the frontal and temporal lobes. Compared with the nTRD group, the TRD group had decreased ALFF in the left/right inferior frontal triangular gyrus, left middle temporal gyrus, left cuneus and bilateral posterior lobes of the cerebellum, and increased ALFF in the left middle frontal gyrus and right superior temporal gyrus, and the TRD group had decreased ReHo in the left/right inferior frontal triangular gyrus, left middle temporal gyrus, and increased ReHo in the right superior frontal gyrus. Compared with the HC group, the TRD group had decreased ALFF/ReHo in both the right inferior frontal triangular gyrus and the left middle temporal gyrus. Pearson correlation analysis showed that both ALFF and ReHo values in these abnormal brain regions were positively correlated with HAMD-17 scores (P < 0.05).ConclusionAlthough the clinical symptoms were similar in the TRD and nTRD groups, abnormal neurological functional activity were present in some of the same brain regions. Compared with the nTRD group, ALFF and ReHo showed a wider range of brain area alterations and more complex neuropathological mechanisms in the TRD group, especially in the inferior frontal triangular gyrus of the frontal lobe and the middle temporal gyrus of the temporal lobe

    The ER-membrane transport system is critical for intercellular trafficking of the NSm movement protein and Tomato Spotted Wilt Tospovirus

    Get PDF
    Plant viruses move through plasmodesmata to infect new cells. The plant endoplasmic reticulum (ER) is interconnected among cells via the ER desmotubule in the plasmodesma across the cell wall, forming a continuous ER network throughout the entire plant. This ER continuity is unique to plants and has been postulated to serve as a platform for the intercellular trafficking of macromolecules. In the present study, the contribution of the plant ER membrane transport system to the intercellular trafficking of the NSm movement protein and Tomato spotted wilt tospovirus (TSWV) is investigated. We showed that TSWV NSm is physically associated with the ER membrane in Nicotiana benthamiana plants. An NSm-GFP fusion protein transiently expressed in single leaf cells was trafficked into neighboring cells. Mutations in NSm that impaired its association with the ER or caused its mis-localization to other subcellular sites inhibited cell-to-cell trafficking. Pharmacological disruption of the ER network severely inhibited NSm-GFP trafficking but not GFP diffusion. In the Arabidopsis thaliana mutant rhd3 with an impaired ER network, NSm-GFP trafficking was significantly reduced, whereas GFP diffusion was not affected. We also showed that the ER-to-Golgi secretion pathway and the cytoskeleton transport systems were not involved in the intercellular trafficking of TSWV NSm. Importantly, TSWV cell-to-cell spread was delayed in the ER-defective rhd3 mutant, and this reduced viral infection was not due to reduced replication. On the basis of robust biochemical, cellular and genetic analysis, we established that the ER membrane transport system serves as an important direct route for intercellular trafficking of NSm and TSWV

    Interactive Effects of Chemical Composition of Food Waste during Anaerobic Co-Digestion under Thermophilic Temperature

    No full text
    The effects of chemical composition (carbohydrates, lipids, and protein) on the anaerobic co-digestion performance of food wastes (FW) were investigated from the viewpoints of methane production, dynamic parameters, and microbial community structure. The results of this study showed that a notable gasification rate was positively correlated with the proportion of the composition. A T2 reactor, which consisted of 60% carbohydrates, 20% lipids, and 20% protein, held a higher gasification rate of 65.09% compared to other groups, while its process parameters showed some deficiency regarding the stability of digestion, especially for low biochemical methane potential (BMP), which was not beneficial for the actual practice. A T4 reactor, with a highest gasification rate of 70.68%, held the maximum BMP (497.44 mL/g VS). The stable chemical parameters achieved the optimal proportion, consisting of 40% carbohydrates, 40% lipids, and 20% protein. Furthermore, its microbial populations were rich and achieved a balance of the two main dominant communities of acetoclastic methanogens and hydrogenotrophic methanogens, whose relative abundance was close. It was obvious that interactive effects were caused by different proportional composition, which led to constantly changing chemical parameters and microbial community

    DataSheet_1_Transcriptome analysis reveals ABA involved in the detoxification mechanism of macroalga Gracilariopsis lemaneiformis to cadmium toxicity.xlsx

    No full text
    IntroductionCadmium (Cd) is a significant threat environmental pollutant in the marine ecological environment offshore. The macroalga, Gracilariopsis lemaneiformis, of significant economic value, is widely cultivated along China’s coastline. Yet, little is known about the molecular mechanisms underlying Cd tolerance in macroalga.MethodsHere, we examined the transcriptome of G. lemaneiformis exposed to Cd to identify the responses to Cd stress.Results and discussionOur findings revealed that Cd led to the retardation of growth rate in G. lemaneiformis, accompanied by a notable reduction in the content of photosynthetic pigments and a decrease in the expression of genes associated with the photosynthetic system and nitrogen metabolism. When exposed to Cd, there was a rapid increase in Cd levels through the upregulation of genes encoding GlZIP6 and GlIRT1. Additionally, the expression of Cd efflux transporters, GlZIP1 and GlABCG22, and the ABCC7 transporter for compartmentation to the vacuole, was induced to mitigate Cd toxicity. Cd also activated crucial genes involved in the ABA biosynthesis and enhanced ABA content, thereby inducing ABA signaling pathway. Furthermore, exogenous ABA reduced the growth inhibition of G. lemaneiformis under Cd stress. Redox homeostasis was adjusted to adapt to Cd toxicity, with thioredoxin, glutaredoxin cycle and ascorbate-glutathione cycle identified as playing significant in maintaining reactive oxygen species homeostasis. Moreover, transcription factors such as several MYBs, signal transmission factors G protein and heat shock proteins (sHSPs, HSP 40, HSP 90, HSP101) were involved in the detoxification of Cd. Collectively, this study provided a comprehensive understanding of the molecular mechanisms underpinning the of responses of macroalga G. lemaneiformis to Cd exposure.</p

    DataSheet_2_Transcriptome analysis reveals ABA involved in the detoxification mechanism of macroalga Gracilariopsis lemaneiformis to cadmium toxicity.docx

    No full text
    IntroductionCadmium (Cd) is a significant threat environmental pollutant in the marine ecological environment offshore. The macroalga, Gracilariopsis lemaneiformis, of significant economic value, is widely cultivated along China’s coastline. Yet, little is known about the molecular mechanisms underlying Cd tolerance in macroalga.MethodsHere, we examined the transcriptome of G. lemaneiformis exposed to Cd to identify the responses to Cd stress.Results and discussionOur findings revealed that Cd led to the retardation of growth rate in G. lemaneiformis, accompanied by a notable reduction in the content of photosynthetic pigments and a decrease in the expression of genes associated with the photosynthetic system and nitrogen metabolism. When exposed to Cd, there was a rapid increase in Cd levels through the upregulation of genes encoding GlZIP6 and GlIRT1. Additionally, the expression of Cd efflux transporters, GlZIP1 and GlABCG22, and the ABCC7 transporter for compartmentation to the vacuole, was induced to mitigate Cd toxicity. Cd also activated crucial genes involved in the ABA biosynthesis and enhanced ABA content, thereby inducing ABA signaling pathway. Furthermore, exogenous ABA reduced the growth inhibition of G. lemaneiformis under Cd stress. Redox homeostasis was adjusted to adapt to Cd toxicity, with thioredoxin, glutaredoxin cycle and ascorbate-glutathione cycle identified as playing significant in maintaining reactive oxygen species homeostasis. Moreover, transcription factors such as several MYBs, signal transmission factors G protein and heat shock proteins (sHSPs, HSP 40, HSP 90, HSP101) were involved in the detoxification of Cd. Collectively, this study provided a comprehensive understanding of the molecular mechanisms underpinning the of responses of macroalga G. lemaneiformis to Cd exposure.</p

    A Study of Differential Resting-State Brain Functional Activity in Males and Females with Recurrent Depressive Disorder

    No full text
    In this study, we observed the sex differences in functional brain activity in patients with recurrent depressive disorder (RDE) and assessed the correlation between abnormal functional brain activity changes and clinical symptoms. A total of 40 patients with RDE (19 male and 21 female) and 42 healthy controls (HCs) (20 male and 22 female) met the inclusion criteria. Analysis of images using regional homogeneity (ReHo) and further analysis of the correlation between abnormal brain areas and clinical symptoms of the different sexes with RDE groups were carried out. For the main effects of sex (male vs. female), there were statistically significant differences in ReHo among the four groups in the right middle temporal gyrus, right thalamus, and left posterior cerebellar lobe. For the effects of the sex-by-group interaction, there were statistically significant differences in ReHo among the four groups in the left middle frontal gyrus, left precentral gyrus, and right insula. Post hoc analyses showed that compared with the female RDE group, the male RDE group had decreased ReHo in the left middle frontal gyrus and right insula. In the female RDE group, the ReHo values of the left middle frontal gyrus were positively correlated with the 17-item Hamilton Rating Scale for Depression (HAMD-17) scores. This study provides new insights into the clinical targeting of different sexes for RDE

    Sex Differences of the Functional Brain Activity in Treatment-Resistant Depression: A Resting-State Functional Magnetic Resonance Study

    No full text
    The presence of different clinical symptoms in patients with treatment-resistant depression (TRD) of different sexes may be related to different neuropathological mechanisms. A total of 16 male patients with TRD, 18 female patients with TRD, 18 male healthy controls (HCs) and 19 female HCs completed this study. We used the amplitude of low frequency fluctuations (ALFF) method to analyze the results. Moreover, the correlation between abnormal brain areas and clinical symptoms in different sexes of the TRD groups was also analyzed. The effects of the sex-by-group interaction difference in ALFF among the four groups was located in the left middle frontal gyrus, left precentral gyrus and left precuneus. Post hoc comparisons revealed that the male TRD group had lower ALFF in the left middle frontal gyrus and left precentral gyrus compared with the female TRD group. There was a positive correlation between the left middle frontal gyrus, the left precuneus and the 17-item Hamilton Rating Scale for Depression scale (HAMD-17) scores, and a negative correlation between the left precentral gyrus and the HAMD-17 scores in the female TRD group. This study will provide some clinical reference value for the sex differences in neuropathological mechanisms of TRD
    corecore