33 research outputs found
Imprinting Light Phase on Matter Wave Gratings in Superradiance Scattering
Superradiance scattering from a Bose-Einstein condensate is studied with a
two-frequency pumping beam. We demonstrate the possibility of fully tuning the
backward mode population as a function of the locked initial relative phase
between the two frequency components of the pumping beam. This result comes
from an imprinting of this initial relative phase on two matter wave gratings,
formed by the forward mode or backward mode condensate plus the condensate at
rest, so that cooperative scattering is affected. A numerical simulation using
a semiclassical model agrees with our observations.Comment: 6 pages, 11 figure
Resonant sequential scattering in two-frequency-pumping superradiance from a Bose-Einstein condensate
We study sequential scattering in superradiance from a Bose-Einstein
condensate pumped by a two-frequency laser beam. We find that the distribution
of atomic side modes presents highly different patterns for various frequency
difference between the two pump components. A novel distribution is observed,
with a frequency difference of eight times the recoil frequency. These
observations reveal that the frequency overlap between the end-fire modes
related to different side modes plays an essential role in the dynamics of
sequential superradiant scattering. The numerical results from a semiclassical
model qualitatively agree with our observations.Comment: Submitted to PR
Observation of a red-blue detuning asymmetry in matter-wave superradiance
We report the first experimental observations of strong suppression of
matter-wave superradiance using blue-detuned pump light and demonstrate a
pump-laser detuning asymmetry in the collective atomic recoil motion. In
contrast to all previous theoretical frameworks, which predict that the process
should be symmetric with respect to the sign of the pump-laser detuning, we
find that for condensates the symmetry is broken. With high condensate
densities and red-detuned light, the familiar distinctive multi-order,
matter-wave scattering pattern is clearly visible, whereas with blue-detuned
light superradiance is strongly suppressed. In the limit of a dilute atomic
gas, however, symmetry is restored.Comment: Accepted by Phys. Rev. Let
Allelopathic interactions of linoleic acid and nitric oxide increase the competitive ability of Microcystis aeruginosa
The frequency and intensity of cyanobacterial blooms are increasing worldwide with major societal and economic costs. Interactions between toxic cyanobacteria and eukaryotic algal competitors can affect toxic bloom formation, but the exact mechanisms of interspecies interactions remain unknown. Using metabolomic and proteomic profiling of co-cultures of the toxic cyanobacterium Microcystis aeruginosa with a green alga as well as of microorganisms collected in a Microcystis spp. bloom in Lake Taihu (China), we disentangle novel interspecies allelopathic interactions. We describe an interspecies molecular network in which M. aeruginosa inhibits growth of Chlorella vulgaris, a model green algal competitor, via the release of linoleic acid. In addition, we demonstrate how M. aeruginosa takes advantage of the cell signaling compound nitric oxide produced by C. vulgaris, which stimulates a positive feedback mechanism of linoleic acid release by M. aeruginosa and its toxicity. Our high-throughput system-biology approach highlights the importance of previously unrecognized allelopathic interactions between a broadly distributed toxic cyanobacterial bloom former and one of its algal competitors
Off-line evaluation of indoor positioning systems in different scenarios: the experiences from IPIN 2020 competition
Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3.
Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612.
Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ”
Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018.
Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026.
Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091.
Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190.
Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU).
Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762.
Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202.
Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001
Off-Line Evaluation of Indoor Positioning Systems in Different Scenarios: The Experiences From IPIN 2020 Competition
Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3.
Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612.
Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ”
Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018.
Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026.
Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091.
Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190.
Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU).
Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762.
Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202.
Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001.Peer reviewe
Vaginal microbial profile of cervical cancer patients receiving chemoradiotherapy: the potential involvement of Lactobacillus iners in recurrence
Abstract The vaginal microbiome is an immune defense against reproductive diseases and can serve as an important biomarker for cervical cancer. However, the intrinsic relationship between the recurrence and the vaginal microbiome in patients with cervical cancer before and after concurrent chemoradiotherapy is poorly understood. Here, we analyzed 125 vaginal microbial profiles from a patient cohort of stage IB–IVB cervical cancer using 16S metagenomic sequencing and deciphered the microbial composition and functional characteristics of the recurrent and non-recurrent both before and after chemoradiotherapy. We demonstrated that the abundance of beneficial bacteria and stability of the microbial community in the vagina decreased in the recurrence group, implying the unique characteristics of the vaginal microbiome for recurrent cervical cancer. Moreover, using machine learning, we identified Lactobacillus iners as the most important biomarker, combined with age and other biomarkers (such as Ndongobacter massiliensis, Corynebacterium pyruviciproducens ATCC BAA-1742, and Prevotella buccalis), and could predict cancer recurrence phenotype before chemoradiotherapy. This study prospectively employed rigorous bioinformatics analysis and highlights the critical role of vaginal microbiota in post-treatment cervical cancer recurrence, identifying promising biomarkers with prognostic significance in the context of concurrent chemoradiotherapy for cervical cancer. The role of L. iners in determining chemoradiation resistance in cervical cancer warrants further detailed investigation. Our results expand our understanding of cervical cancer recurrence and help develop better strategies for prognosis prediction and personalized therapy
Global biogeography of microbes driving ocean ecological status under climate change
Altres ajuts: Fundación Ramón Areces project CIVP20A6621.Microbial communities play a crucial role in ocean ecology and global biogeochemical processes. However, understanding the intricate interactions among diversity, taxonomical composition, functional traits, and how these factors respond to climate change remains a significant challenge. Here, we propose seven distinct ecological statuses by systematically considering the diversity, structure, and biogeochemical potential of the ocean microbiome to delineate their biogeography. Anthropogenic climate change is expected to alter the ecological status of the surface ocean by influencing environmental conditions, particularly nutrient and oxygen contents. Our predictive model, which utilizes machine learning, indicates that the ecological status of approximately 32.44% of the surface ocean may undergo changes from the present to the end of this century, assuming no policy interventions. These changes mainly include poleward shifts in the main taxa, increases in photosynthetic carbon fixation and decreases in nutrient metabolism. However, this proportion can decrease significantly with effective control of greenhouse gas emissions. Our study underscores the urgent necessity for implementing policies to mitigate climate change, particularly from an ecological perspective
The Protective Effects of Water-Soluble Alginic Acid on the N-Terminal of Thymopentin
Thymopentin (TP5) has exhibited strong antitumor and immunomodulatory effects in vivo. However, the polypeptide is rapidly degraded by protease and aminopeptidase within a minute at the N-terminal of TP5, resulting in severe limitations for further practical applications. In this study, the protective effects of water-soluble alginic acid (WSAA) on the N-terminal of TP5 were investigated by establishing an H22 tumor-bearing mice model and determining thymus, spleen, and liver indices, immune cells activities, TNF-α, IFN-γ, IL-2, and IL-4 levels, and cell cycle distributions. The results demonstrated that WSAA+TP5 groups exhibited the obvious advantages of the individual treatments and showed superior antitumor effects on H22 tumor-bearing mice by effectively protecting the immune organs, activating CD4+ T cells and CD19+ B cells, and promoting immune-related cytokines secretions, finally resulting in the high apoptotic rates of H22 cells through arresting them in S phase. These data suggest that WSAA could effectively protect the N-terminal of TP5, thereby improving its antitumor and immunoregulatory activities, which indicates that WSAA has the potential to be applied in patients bearing cancer or immune deficiency diseases as a novel immunologic adjuvant