20 research outputs found

    The influence of nitrogen doping of the acceptor in orange–red thermally activated delayed fluorescence emitters and OLEDs

    Get PDF
    Funding: C. Si thanks the China Scholarship Council (201806890001). D.S acknowledges support from the Royal Academy of Engineering Enterprise Fellowship (EF2122-13106). The St Andrews team thanks EPSRC for financial support (EP/P010482/1). X.-H. Zhang acknowledges support from the National Natural Science Foundation of China (Grant Nos. 52130304, 51821002), Suzhou Key Laboratory of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science & Technology, the 111 Project.Nitrogen-containing polycyclic aromatic hydrocarbons (N-PAH) have been widely used as deep lowest unoccupied molecular orbital (LUMO) acceptors in donor-acceptor (D-A) red thermally activated delayed fluorescent (TADF) emitters and their use in organic light-emitting diodes. However, most of the studies have focused disparately on donor/acceptor combinations to yield efficient emitters, while it is rare that there is a methodological study to investigate the influence of the nitrogen (N) doping ratios on the ground and excited states of PAH acceptors. Here, we report a family of four different N-PAH acceptors containing different numbers of nitrogen atoms within the N-PAH and their use in D-A TADF emitters, DMACBP, DMACPyBP, DMACBPN and DMACPyBPN, when coupled to the same donor, 9,9-dimethyl-9,10-dihydroacridine (DMAC). As the nitrogen content in the acceptor increases the LUMO becomes progressively more stabilized while the singlet-triplet energy gap (ΔEST) decreases and the rate constant for reverse intersystem crossing (kRISC) increases. In particular, introducing nitrogen at the 10-position of the dibenzo[a,c]phenazine (BP) leads to a more than ten-fold enhancement in kRISC in DMACPyBP and DMACPyBPN compared to DMACBP and DMACBPN. Among the OLEDs with all four emitters that with DMACBPN demonstrates the highest EQEmax of 19.4% at an emission peak of 588 nm. while the deepest red emitting device employed DMACPyBPN (λEL = 640 nm) with an EQEmax of 5.4%.Publisher PDFPeer reviewe

    The role of the GABA system in amphetamine-type stimulant use disorders

    Get PDF
    Abuse of amphetamine-type stimulants (ATS) has become a global public health problem. ATS causes severe neurotoxicity, which could lead to addiction and could induce psychotic disorders or cognitive dysfunctions. However, until now, there has been a lack of effective medicines for treating ATS-related problems. Findings from recent studies indicate that in addition to the traditional dopamine-ergic system, the GABA (gamma-aminobutyric acid)-ergic system plays an important role in ATS abuse. However the exact mechanisms of the GABA-ergic system in amphetamine-type stimulant use disorders are not fully understood. This review discusses the role of the GABA-ergic system in ATS use disorders, including ATS induced psychotic disorders and cognitive dysfunctions. We conclude that the GABA-ergic system are importantly involved in the development of ATS use disorders through multiple pathways, and that therapies or medicines that target specific members of the GABA-ergic system may be novel effective interventions for the treatment of ATS use disorders

    VTET: a variable threshold exact test for identifying disease-associated copy number variations enriched in short genomic regions

    No full text
    Copy number variations (CNVs) constitute a major source of genetic variations in human populations and have been reported to be associated with complex diseases. Methods have been developed for detecting CNVs and testing CNV associations in genome-wide association studies (GWAS) based on SNP arrays. Commonly used two-step testing procedures work well only for long CNVs while direct CNV association testing methods work only for recurrent CNVs. Assuming that short CNVs disrupting any part of a given genomic region increase disease risk, we developed a variable threshold exact test (VTET) for testing disease associations of CNVs randomly distributed in the genome using intensity data from SNP arrays. By extensive simulations, we found that VTET outperformed two-step testing procedures based on existing CNV calling algorithms for short CNVs and that the performance of VTET was robust to the length of the genomic region. In addition, VTET had a comparable performance with CNVtools for testing the association of recurrent CNVs. Thus, we expect VTET to be useful for testing disease associations of both recurrent and randomly distributed CNVs using existing GWAS data. We applied VTET to a lung cancer GWAS and identified a genome-wide significant region on chromosome 18q22.3 for lung squamous cell carcinoma

    Fluorene-fused Dimeric Carbonyl/amine Multiresonant Thermally Activated Delayed Fluorescence Emitter for Efficient Green OLEDs

    No full text
    Multiresonant thermally activated delayed fluorescence (MR-TADF) materials possessing narrow emission spectra have attracted significant attention as emitters for use in high color purity organic light-emitting diodes (OLEDs). Here we report a fluorene-fused dimeric carbonyl/amine MR TADF emitter DDiKTa-F that is designed to show narrower and brighter emission than the previously reported compound DDiKTa. By locking the conformation of the molecule using a fluorene bridge, a narrower, brighter (PL = 78%), and red-shifted emission at 494 nm (FWHM of 49 nm) was obtained. The OLEDs with DDiKTa-F emitted at 493 nm and showed an EQEmax of 15.3%. Despite a slightly lower efficiency compared to the previously reported device with DDiKTa, the device exhibited a lower efficiency roll-off of 35% at 100 cd m-2

    Genome analysis of orf virus isolates from goats in the Fujian Province of southern China

    No full text
    Orf virus (ORFV), a species of the genus Parapoxvirus of the family Poxviridae, causes nonsystemic, highly contagious and eruptive disease in sheep, goat, and other wild and domestic ruminants. Our previous work shows orf to be ubiquitous in the Fujian Province of China, a region where there is considerable heterogeneity among ORFVs. In this study, we sequenced full genomes of four Fujian goat ORFV strains (OV-GO, OV-YX, OV-NP and OV-SJ1). The four strains were 132 to 139 kb in length, with each containing 124 to 132 genes and about 64% G+C content. The most notable differences between the four strains were found near the genome termini. OV-NP lacked seven and OV-SJ1 lacked three genes near the right terminus when compared against other ORFVs. We also investigated the skin-virulence of the four Fujian ORFVs in goats. The ORFVs with gene deletions showed low virulence while the ORFVs without gene deletions showed high virulence in goats suggesting gene deletion possibly leads to attenuation of ORFVs. Gene 134 was disrupted in OV-NP genome due to the lack of initial code. The phylogenetic tree based on complete Parapoxviruse genomes showed that sheep originated and goat originated ORFVs formed distinctly separate branches with 100% bootstrap. Based on the single gene phylogenetic tree of 132 genes of ORFVs, 32 genes can be easily distinguished as having originated from sheep or goats. Multiple alignment of amino acid sequences of gene 008 from the genome of 5 goat ORFVs and 4 sheep ORFVs revealed 33 unique amino acids differentiating it as having sheep or goats as host. The availability of genomic sequences of four Fujian goat ORFVs aids in our understanding of the diversity of orf virus isolates in this region and can assist in distinguishing between orf strains that originate in sheep and goats

    The design of extended multiple resonance thermally activated delayed fluorescence emitter based on polycyclic amine/carbonyl system

    No full text
    The development of muliple resonance thermally activated delayed fluorescence (MR-TADF) materials possessing narrow emission spectra has attracted significant attention as emitters for high colour purity organic light emitting diodes (OLEDs). In this work, a simple design strategy is introduced to construct a MR-TADF emitter, DDiKTa, through dimerization of the known MR-TADF emitter DiKTa. This design permits concentration quenching to be largely suppressed, which is a known weakness of previously reported MR-TADF emitters. OLEDs based on DDiKTa show an EQEmax of 19% at a doping concentration of 9 wt%. The electrolumicence spectrum is red-shifted into the green, producing a rare example of a green-emitting MR-TADF OLED

    The design of extended multiple resonance thermally activated delayed fluorescence emitter based on polycyclic amine/carbonyl system

    No full text
    This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska Curie grant agreement No. 838009 (TSFP) and No. 838885 (NarrowbandSSL). D.S. acknowledges support from the Marie Skłodowska-Curie Individual Fellowship, the National Postdoctoral Program for Innovative Talents (BX201700164), the Jiangsu Planned Projects for Postdoctoral Research Funds (2018K011A). The St Andrews team would also like to thank the Leverhulme Trust (RPG-2016047) and EPSRC (EP/P010482/1) for financial support. We thank Umicore AG for the gift of materials. Computational resources have beenprovided by the Consortium des Équipements de Calcul In-tensif (CÉCI), funded by the Fonds de la Recherche Scientifiques de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11.The development of muliple resonance thermally activated delayed fluorescence (MR-TADF) materials possessing narrow emission spectra has attracted significant attention as emitters for high colour purity organic light emitting diodes (OLEDs). In this work, a simple design strategy is introduced to construct a MR-TADF emitter, DDiKTa, through dimerization of the known MR-TADF emitter DiKTa. This design permits concentration quenching to be largely suppressed, which is a known weakness of previously reported MR-TADF emitters. OLEDs based on DDiKTa show an EQEmax of 19% at a doping concentration of 9 wt%. The electrolumicence spectrum is red-shifted into the green, producing a rare example of a green-emitting MR-TADF OLED.Publisher PDFPeer reviewe
    corecore