20 research outputs found

    Visual High-Throughput Screening for Developing a Fatty Acid Amide Hydrolase Natural Inhibitor Based on an Enzyme-Activated Fluorescent Probe

    Get PDF
    Fatty acid amide hydrolase (FAAH) is an important drug target for the treatment of many disease related conditions such as pain, inflammation, and mood disorders due to its vital role in the metabolism of endocannabinoid. In our present work, a FAAH-activated fluorescent probe named THPO was developed, which possessed high selectivity and excellent sensitivity for FAAH in complex systems. Critically, its metabolite 7-amino-3H-phenoxazin-3-one (AHPO) has long excitation and emission wavelengths and high fluorescence quantum yield, which are necessary for monitoring the activity of FAAH in living systems. In addition, a visual high-throughput screening method for FAAH inhibitors was established using THPO, which resulted in the discovery of an efficient natural inhibitor Neobavaisoflavone that was identified from 68 traditional herbal medicines. These results indicated that THPO can be used as a molecular tool for the rapid evaluation of FAAH activity in complex systems as well as providing an effective approach to screen FAAH inhibitors and providing a boost for the discovery of therapeutic agents toward FAAH related diseases. </p

    Measurement Invariance of the Depression Anxiety Stress Scales-21 Across Gender in a Sample of Chinese University Students

    Get PDF
    The Depression Anxiety Stress Scales-21 (DASS-21) has three 7-item subscales (depression, anxiety, and stress). The current study aims assess the gender-based measurement invariance of the DASS-21 questionnaire in a Chinese university student sample from five different cities. The sample was composed of 13208 participants (62.3% female, mean age of 19.7 years, and SD age = 1.8). Multi-group confirmatory factor analysis supported full measurement invariance for the three subscales. The findings support the measurement invariance of DASS-21 scores across gender. Future research on the DASS should include additional validation across ethnicities and testing of all versions of the DASS

    A Dynamic Bayesian Network-Based Real-Time Crash Prediction Model for Urban Elevated Expressway

    No full text
    Traffic crash is a complex phenomenon that involves coupling interdependency among multiple influencing factors. Considering that interdependency is critical for predicting crash risk accurately and contributes to revealing the underlying mechanism of crash occurrence as well, the present study attempts to build a Real-Time Crash Prediction Model (RTCPM) for urban elevated expressway accounting for the dynamicity and coupling interdependency among traffic flow characteristics before crash occurrence and identify the most probable risk propagation path and the most significant contributors to crash risk. In this study, Dynamic Bayesian Network (DBN) was the framework of the RTCPM. Random Forest (RF) method was employed to identify the most important variables, which were used to build DBN-based RTCPMs. The PC algorithm combined with expert experience was further applied to investigate the coupling interdependency among traffic flow characteristics in the DBN model. A comparative analysis among the improved DBN-based RTCPM considering the interdependency, the original DBN-based RTCPM without considering the interdependency, and Multilayer Perceptron (MLP) was conducted. Besides, the sensitivity and strength of influences analyses were utilized to identify the most probable risk propagation path and the most significant contributors to crash risk. The results showed that the improved DBN-based RTCPM had better prediction performance than the original DBN-based RTCPM and the MLP based RTCPM. The most probable risk influencing path was identified as follows: speed on current segment (V) (time slice 2)⟶V (time slice 1)⟶speed on upstream segment (U_V) (time slice 1)⟶Traffic Performance Index (TPI) (time slice 1)⟶crash risk on current segment. The most sensitive contributor to crash risk in this path was V (time slice 2), followed by TPI (time slice 1), V (time slice 1), and U_V (time slice 1). These results indicate that the improved DBN-based RTCPM has the potential to predict crashes in real time for urban elevated expressway. Besides, it contributes to revealing the underlying mechanism of crash and formulating the real-time risk control measures

    Structural dependence of the microwave dielectric properties of Cr³⁺-substituted ZnGa₂O₄ spinel ceramics : crystal distortion and vibration mode studies

    No full text
    Zn[CrGa(₁-ⅹ)]₂O₄ (abbreviated Cr-ZGO) ceramics with x = 0–0.15 were synthesized by the conventional solid state method. The correlation between the microwave dielectric properties and the changes in the crystal structure and cation distribution of Cr-ZGO as a function of Cr³⁺ substitution for Ga3+ has been systematically investigated. The addition of Cr³⁺ promotes the densification of the ceramics and results in a normal spinel structure with Cr³⁺ occupying an octahedral site. With an increase in the Cr3+ content from 0 to 15 mol%, the er of the ceramics increases, while the tf remains almost unchanged and the Q f values ramp up to a maximum at 1 mol% Cr³⁺ addition and then ramp down continuously. 1Cr-ZGO exhibits the best microwave dielectric properties, with er, Q f, tand and tf being 9.88 (@9.9 GHz), 111 470 GHz, 8.87, and 74 ppm ⁰C-¹ , respectively. The Q f value was increased by almost 40% compared with the pure ZGO ceramics (B80 000 GHz). The enhancement of er and Q f values of Cr-ZGO can be attributed to the better bulk density, but further analysis by Rietveld refinement, Raman spectroscopy and FT-IR spectroscopy elucidated that the octahedral tilting in the spinel structure and the degree of short-range cation distribution are other governing factors. The effect of Cr³⁺ substitution for Ga³⁺ on the octahedral distortion and cation distribution in the spinel structure has been discussed in detail.Financial support from the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Opening Project of the State Key Laboratory of HighPerformance Ceramics and Superfine Microstructure (project no. SKL201309SIC), the College Industrialization Project of Jiangsu Province (JHB2012-12), the Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, the Science and Technology Projects of Guangdong Province (project no. 2011A091103002), Graduate Student Training Innovation Project in Jiangsu province (KYCX17_0973), and China Scholarship Council (No. 201808320360) is acknowledged

    Social Cognitive Dysfunction in Elderly Patients After Anesthesia and Surgery

    No full text
    Extensive studies have revealed that cognitive processing was impaired after anesthesia and surgery, particularly for the elderly patients. However, most of the existing studies focused on the general cognitive deficits (e.g., delayed neuro-cognitive recovery and POCD). Although diagnosis of social abilities has been used in various clinical fields, few studies have investigated the potential deficit on social cognition after anesthesia and surgery. The current study examined whether there was any social cognitive dysfunction after anesthesia and surgery. We achieved this by taking biological motion (BM) as the stimuli of interest, the perception of which has been taken as the hallmark of social cognition. The elderly patients (aged >= 60 years) were required to judge whether an upright BM stimulus appeared among the dynamic noises to test their social cognition, as well as do a Mini-Mental State Examination to test their general cognition. The two tests were performed at both 1-day before and 7-day after the surgery. Results showed that 31.25% of patients exhibited BM perception deficit after anesthesia and surgery relative to before anesthesia and surgery, implying that social cognitive dysfunction existed. Meanwhile, social cognitive dysfunction was independent from delayed neurocognitive recovery

    Defect Engineering in Two Common Types of Dielectric Materials for Electromagnetic Absorption Applications

    No full text
    Dielectric materials are greatly desired for electromagnetic absorption applications. Lots of research shows that conduction loss and polarization are two of the most important factors determining complex permittivity. However, the detailed dissipation mechanisms for the improved microwave absorption performance are often based on semiempirical rules, lacking practical data relationships between conduction loss/polarization and dielectric behaviors. Here, a strategy of introducing point defects is used to understand such underlying relationships, where polarizability and conductivity are adjustable by manipulating oxygen deficiency or heteroatoms. Based on first principles calculations and the applied oxygen-deficient strategy, dielectric polarization is shown to be dominant in determining the permittivity behaviors in semiconductors. Meanwhile, the presented nitrogen doping strategy shows that conduction loss is dominant in determining the permittivity behavior in graphitized carbon materials. The validity of the methods for using point defects to explore the underlying relations between conduction loss/polarization and dielectric behaviors in semiconductor and graphitized carbon are demonstrated for the first time, which are of great importance in optimizing the microwave absorption performance by defect engineering and electronic structure tailoring.Financial supports from the NSFC (Grant Nos. 11575085, 51602154, 11472131, and 11622218), the Aeronautics Science Foundation of China (Grant No. 2017ZF52066), the Qing Lan Project, Six talent peaks project in Jiangsu Province (Project No. XCL-035), the Jiangsu NSF (BK20160037), the program of China Scholarships Council (Grant No. 201806830013), Funding for Outstanding Doctoral Dissertation in NUAA (BCXJ 18-07), the Open Research Fund of Jiangsu Provincial Key Laboratory for Nanotechnology of Nanjing University, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) are gratefully acknowledged

    Robust and efficient transfer hydrogenation of carbonyl compounds catalyzed by <i>NN</i>-Mn(I) complexes.

    Full text link
    A series of manganese(I) carbonyl complexes bearing structurally related NN- and NNN-chelating ligands have been synthesized and assessed as catalysts for transfer hydrogenation (TH). Notably, the NN-systems based on N-R functionalized 5,6,7,8-tetrahydroquinoline-8-amines, proved the most effective in the manganese-promoted conversion of acetophenone to 1-phenylethanol. In particular, the N-isopropyl derivative, Mn1, when conducted in combination with t-BuONa, was the standout performer mediating not only the reduction of acetophenone but also a range of carbonyl substrates including (hetero)aromatic-, aliphatic- and cycloalkyl-containing ketones and aldehydes with especially high values of TON (up to 17 200; TOF of 3550 h-1). These findings, obtained through a systematic variation of the N-R group of the NN ligand, are consistent with an outer-sphere mechanism for the hydrogen transfer. As a more general point, this Mn-based catalytic TH protocol offers an attractive and sustainable alternative for producing alcoholic products from carbonyl substrates.</p
    corecore