595 research outputs found
Reproductive biology of smooth cordgrass (Spartina alterniflora)
Smooth cordgrass (S. alterniflora) is a perennial grass that dominates the salt marsh in tidal wetlands along the Atlantic and Gulf Coast of North America and has been used for preventing soil erosion and restoring wetlands. Accessions collected from south Louisiana were studied to investigate flowering phenology, pollen viability, crossability, and seed production. S. alterniflora exhibited protogynous flowering where stigmas exserted 2 to 5 days from the floret prior to anthesis. Pollen shed primarily between 8:00 and 10:00 AM. Pollens were viable with average germination of 69% and stigma was receptive after exsertion. Pollen germinated in 15 minutes and pollen tubes reached micropyle in 55 to 75 minutes after contacting stigma. Protogyny could be used to produce controlled hybrid without emasculation and it could reduce tedious labor required for making crosses. S. alterniflora was cross-pollinated with 52% seed set for cross-pollination and 26% for self-pollination. Flowering started in early July and ended by the middle of October with a flowering peak between early September and early October. During the flowering peak, seed set, kernel weight, and seed viability were positively correlated to flowering date while unfilled and total seeds/panicle were negatively correlated with flowering date. Kernel weight, flowering date, seed weight/panicle, and panicle height were positively correlated with seed set. Plant flowering during the peak period might produce better seed set and seed weight. Field investigation showed an average seed set of 47% with range from 0 to 94% for S. alterniflora, which provided large opportunity for selection. Several lines with improved characteristics were selected and would be valuable for recurrent selection program with an objective of developing improved S. alterniflora populations. However, short term breeding objective should be focused on selection of plants from native collection that have high percentage of seed set, germination, and broad adaptability
Divergent roles of endothelial NF-κB in multiple organ injury and bacterial clearance in mouse models of sepsis
The effect of ions doping on the rheological properties of ferrite ferrofluids
A series of ferrite nanoparticles were synthesized via ion doping and then were coated by surfactant and dispersed in perfluorinated polyether oil (PFPE-oil), and the various ferrite ferrofluids were obtained. The scanning electron microscope was used to characterize the morphology of particles and the dispersed state of ferrofluid, energy-dispersive spectroscopy was used to study the chemical composition of particles, fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis were used to study the coated effect of PFPE-acids on particles, vibrating sample magnetometer was used to research the magnetization curves of ferrite particles, and the rheological property of the ferrite ferrofluids was studied by a rheometer. The results show that Zn2+, Mn2+/Zn2+, and Dy3+ ions were doped in the ferrite nanoparticles with a size less than 50 nm. The four kinds of ferrite nanoparticles have the characteristics of super-paramagnetic materials, and the M-T curves decrease with increasing temperature, while their decline rates are notably different. The ferrite particles are coated with PFPE acids chemically, and the ferrofluids have well dispersion stability. The rheological properties of the ferrite ferrofluids change with the variation of ion doping, magnetic field strength, temperature, etc. The magnetism and viscosity of ferrite ferrofluids are regularly affected by ion doping, and the results will have a great significance on basic research and related applications
RETRACTED ARTICLE: CDK4 and miR-15a comprise an abnormal automodulatory feedback loop stimulating the pathogenesis and inducing chemotherapy resistance in nasopharyngeal carcinoma
Abstract
Background
In previous investigation, we reported that stably knocking down cyclin-dependent kinase 4(CDK4) induced expression of let-7c, which further suppressed cell cycle transition and cell growth by modulating cell cycle signaling in nasopharyngeal carcinoma (NPC). In this study, we further explored the molecular function and mechanism of CDK4 modulating miRNAs to stimulate cell cycle transition, cell growth, and Cisplatin (DDP) -resistance on in NPC.
Methods
We identified changes in miRNAs by miRNA array and real-time PCR and the effect on DDP after knocking down CDK4 in NPC cells. Further, we investigated the molecular mechanisms by which CDK4 modulated miR-15a in NPC. Moreover, we also explored the role of miR-15a and the effect on DDP in NPC. Finally, we analyzed the correlation of miR-15a and CDK4 expression in NPC tissues.
Results
In addition to let-7 family members, we observed that upregulated expression of miR-15a was significantly induced in CDK4-suppressed NPC cells. Further, we found that knocking down CDK4 suppressed c-Myc expression, and the latter directly suppressed the expression of miR-15a in NPC. Furthermore, miR-15a as a tumor suppressor antagonized CDK4 repressing cell cycle progression and cell growth in vitro and in vivo and induced the sensitivity of cells to DDP by regulating the c-Myc/CCND1/CDK4/E2F1 pathway in NPC. Finally, miR-15a was negatively weak correlated with the expression of CDK4 in NPC.
Conclusions
Our studies demonstrate that CDK4 and miR-15a comprise an abnormal automodulatory feedback loop stimulating the pathogenesis and inducing chemotherapy resistance in NPC.
</jats:sec
Gut microbiota and its metabolites promote painful diabetic peripheral neuropathy complicated with cognitive dysfunction in mice
IntroductionPainful diabetic peripheral neuropathy (PDPN) is closely linked to cognitive dysfunction. The gut microbiota plays a pivotal role in the pathophysiology of diabetic neuropathy, but its contribution, along with related metabolites, to PDPN complicated by cognitive impairment remains poorly understood. This study aimed to explore the characteristics of gut microbiota and metabolites in db/db mice with PDPN and concomitant cognitive impairment, and to investigate the underlying mechanisms.MethodsMale homozygous db/db mice and their littermate db/m mice used as the research subjects. Thermal hyperalgesia and mechanical allodynia tests were applied to assess pain phenotypes, while the Morris water maze test was used to evaluate cognitive function. Immunohistochemistry was employed to measure intraepidermal nerve fiber density and nerve fiber markers, and Western blot analysis was used to detect pro-inflammatory cytokine levels. 16S rRNA gene sequencing of the V3-V4 regions was applied to analyze the gut microbiota structure, and LC-MS was used to analyze fecal metabolites.ResultsAt 12 weeks of age, db/db mice exhibited PDPN and cognitive deficits. The gut microbiota composition differed between the two groups, with LEfSe analysis identifying 38 key amplicon sequence variants (ASVs) enriched in db/db mice and 39 ASVs more abundant in db/m mice. Meanwhile, 398 metabolites that were significantly different between the two groups. Bidirectional mediation models indicated that Dl-lactate positively mediated the relationship between specific microbiota (Muribaculaceae (ASV243) and Ruminococcus (ASV149)) and thermal latency. In contrast, polygalic acid negatively mediated the relationship between Muribaculaceae and escape latency, as well as between Ruminococcus and thermal latency. These microbiota and metabolite changes were associated with elevated proinflammatory cytokine levels in the dorsal root ganglion (DRG) and hippocampus, respectively.DiscussionThis study highlights the intricate relationship between gut microbiota, metabolites, and both PDPN and cognitive dysfunction in db/db mice. It also provides insights into potential mechanisms underlying the pathophysiology of these comorbidities, suggesting that modulation of the gut microbiota and its metabolites may offer new therapeutic strategies
MMPosE: Movie-induced multi-label positive emotion classification through EEG signals
Emotional information plays an important role in various multimedia applications. Movies, as a widely available form of multimedia content, can induce multiple positive emotions and stimulate people's pursuit of a better life. Different from negative emotions, positive emotions are highly correlated and difficult to distinguish in the emotional space. Since different positive emotions are often induced simultaneously by movies, traditional single-target or multi-class methods are not suitable for the classification of movie-induced positive emotions. In this paper, we propose TransEEG, a model for multi-label positive emotion classification from a viewer's brain activities when watching emotional movies. The key features of TransEEG include (1) explicitly modeling the spatial correlation and temporal dependencies of multi-channel EEG signals using the Transformer structure based model, which effectively addresses long-distance dependencies, (2) exploiting the label-label correlations to guide the discriminative EEG representation learning, for that we design an Inter-Emotion Mask for guiding the Multi-Head Attention to learn the inter-emotion correlations, and (3) constructing an attention score vector from the representation-label correlation matrix to refine emotion-relevant EEG features. To evaluate the ability of our model for multi-label positive emotion classification, we demonstrate our model on a state-of-the-art positive emotion database CPED. Extensive experimental results show that our proposed method achieves superior performance over the competitive approaches
Reconstruction of surface structure of MoBiTeO/SiO2 catalyst during propane selective oxidation
The catalytic performance of MoBiTeO/SiO2 for selective oxidation of propane to acrolein was investigated, and the catalyst was characterized by means of X-ray powder diffraction, in-situ laser Raman spectroscopy, in-situ laser Raman spectroscopy, and X-ray photoelectron spectroscopy. The results showed that Te-polymolybdate species were the main active phase on the fresh catalyst. Under the conditions of 570 degrees C and C3H8/O-2/N-2 = 1.2/1/4, some Te species in the catalyst were reduced to metal Te which was volatilized during the reaction, and therefore the active surface phase of the catalyst was reconstructed, leading to the formation of MoO3 species. Along with the active surface reconstruction, both the conversion of propane and the selectivity for acrolein were increased, which was attributed to the synergistic effect between Te-polymolybdate and MoO3
- …
