4,868 research outputs found

    Deformable Overset Grid for Multibody Unsteady Flow Simulation

    Get PDF
    A deformable overset grid method is proposed to simulate the unsteady aerodynamic problems with multiple flexible moving bodies. This method uses an unstructured overset grid coupled with local mesh deformation to achieve both robustness and efficiency. The overset grid hierarchically organizes the subgrids into clusters and layers, allowing for overlapping/embedding of different type meshes, in which the mesh quality and resolution can be independently controlled. At each time step, mesh deformation is locally applied to the subgrids associated with deforming bodies by an improved Delaunay graph mapping method that uses a very coarse Delaunay mesh as the background graph. The graph is moved and deformed by the spring analogy method according to the specified motion, and then the computational meshes are relocated by a simple one-to-one mapping. An efficient implicit hole-cutting and intergrid boundary definition procedure is implemented fully automatically for both cell-centered and cell-vertex schemes based on the wall distance and an alternative digital tree data search algorithm. This method is successfully applied to several complex multibody unsteady aerodynamic simulations, and the results demonstrate the robustness and efficiency of the proposed method for complex unsteady flow problems, particularly for those involving simultaneous large relative motion and self-deformation

    A Diffusion model for POI recommendation

    Full text link
    Next Point-of-Interest (POI) recommendation is a critical task in location-based services that aim to provide personalized suggestions for the user's next destination. Previous works on POI recommendation have laid focused on modeling the user's spatial preference. However, existing works that leverage spatial information are only based on the aggregation of users' previous visited positions, which discourages the model from recommending POIs in novel areas. This trait of position-based methods will harm the model's performance in many situations. Additionally, incorporating sequential information into the user's spatial preference remains a challenge. In this paper, we propose Diff-POI: a Diffusion-based model that samples the user's spatial preference for the next POI recommendation. Inspired by the wide application of diffusion algorithm in sampling from distributions, Diff-POI encodes the user's visiting sequence and spatial character with two tailor-designed graph encoding modules, followed by a diffusion-based sampling strategy to explore the user's spatial visiting trends. We leverage the diffusion process and its reversed form to sample from the posterior distribution and optimized the corresponding score function. We design a joint training and inference framework to optimize and evaluate the proposed Diff-POI. Extensive experiments on four real-world POI recommendation datasets demonstrate the superiority of our Diff-POI over state-of-the-art baseline methods. Further ablation and parameter studies on Diff-POI reveal the functionality and effectiveness of the proposed diffusion-based sampling strategy for addressing the limitations of existing methods

    RAHNet: Retrieval Augmented Hybrid Network for Long-tailed Graph Classification

    Full text link
    Graph classification is a crucial task in many real-world multimedia applications, where graphs can represent various multimedia data types such as images, videos, and social networks. Previous efforts have applied graph neural networks (GNNs) in balanced situations where the class distribution is balanced. However, real-world data typically exhibit long-tailed class distributions, resulting in a bias towards the head classes when using GNNs and limited generalization ability over the tail classes. Recent approaches mainly focus on re-balancing different classes during model training, which fails to explicitly introduce new knowledge and sacrifices the performance of the head classes. To address these drawbacks, we propose a novel framework called Retrieval Augmented Hybrid Network (RAHNet) to jointly learn a robust feature extractor and an unbiased classifier in a decoupled manner. In the feature extractor training stage, we develop a graph retrieval module to search for relevant graphs that directly enrich the intra-class diversity for the tail classes. Moreover, we innovatively optimize a category-centered supervised contrastive loss to obtain discriminative representations, which is more suitable for long-tailed scenarios. In the classifier fine-tuning stage, we balance the classifier weights with two weight regularization techniques, i.e., Max-norm and weight decay. Experiments on various popular benchmarks verify the superiority of the proposed method against state-of-the-art approaches.Comment: Accepted by the ACM International Conference on Multimedia (MM) 202

    ALEX: Towards Effective Graph Transfer Learning with Noisy Labels

    Full text link
    Graph Neural Networks (GNNs) have garnered considerable interest due to their exceptional performance in a wide range of graph machine learning tasks. Nevertheless, the majority of GNN-based approaches have been examined using well-annotated benchmark datasets, leading to suboptimal performance in real-world graph learning scenarios. To bridge this gap, the present paper investigates the problem of graph transfer learning in the presence of label noise, which transfers knowledge from a noisy source graph to an unlabeled target graph. We introduce a novel technique termed Balance Alignment and Information-aware Examination (ALEX) to address this challenge. ALEX first employs singular value decomposition to generate different views with crucial structural semantics, which help provide robust node representations using graph contrastive learning. To mitigate both label shift and domain shift, we estimate a prior distribution to build subgraphs with balanced label distributions. Building on this foundation, an adversarial domain discriminator is incorporated for the implicit domain alignment of complex multi-modal distributions. Furthermore, we project node representations into a different space, optimizing the mutual information between the projected features and labels. Subsequently, the inconsistency of similarity structures is evaluated to identify noisy samples with potential overfitting. Comprehensive experiments on various benchmark datasets substantiate the outstanding superiority of the proposed ALEX in different settings.Comment: Accepted by the ACM International Conference on Multimedia (MM) 202

    Kernel-based Substructure Exploration for Next POI Recommendation

    Full text link
    Point-of-Interest (POI) recommendation, which benefits from the proliferation of GPS-enabled devices and location-based social networks (LBSNs), plays an increasingly important role in recommender systems. It aims to provide users with the convenience to discover their interested places to visit based on previous visits and current status. Most existing methods usually merely leverage recurrent neural networks (RNNs) to explore sequential influences for recommendation. Despite the effectiveness, these methods not only neglect topological geographical influences among POIs, but also fail to model high-order sequential substructures. To tackle the above issues, we propose a Kernel-Based Graph Neural Network (KBGNN) for next POI recommendation, which combines the characteristics of both geographical and sequential influences in a collaborative way. KBGNN consists of a geographical module and a sequential module. On the one hand, we construct a geographical graph and leverage a message passing neural network to capture the topological geographical influences. On the other hand, we explore high-order sequential substructures in the user-aware sequential graph using a graph kernel neural network to capture user preferences. Finally, a consistency learning framework is introduced to jointly incorporate geographical and sequential information extracted from two separate graphs. In this way, the two modules effectively exchange knowledge to mutually enhance each other. Extensive experiments conducted on two real-world LBSN datasets demonstrate the superior performance of our proposed method over the state-of-the-arts. Our codes are available at https://github.com/Fang6ang/KBGNN.Comment: Accepted by the IEEE International Conference on Data Mining (ICDM) 202
    corecore