6,680 research outputs found

    Drought impacts on ecosystem functions of the U.S. National Forests and Grasslands: Part I evaluation of a water and carbon balance model

    Get PDF
    Understanding and quantitatively evaluating the regional impacts of climate change and variability (e.g., droughts) on forest ecosystem functions (i.e., water yield, evapotranspiration, and productivity) and services (e.g., fresh water supply and carbon sequestration) is of great importance for developing climate change adaptation strategies for National Forests and Grasslands (NFs) in the United States. However, few reliable continental-scale modeling tools are available to account for both water and carbon dynamics. The objective of this study was to test a monthly water and carbon balance model, the Water Supply Stress Index (WaSSI) model, for potential application in addressing the influences of drought on NFs ecosystem services across the conterminous United States (CONUS). The performance of the WaSSI model was comprehensively assessed with measured streamflow (Q) at 72 U.S. Geological Survey (USGS) gauging stations, and satellite-based estimates of watershed evapotranspiration (ET) and gross primary productivity (GPP) for 170 National Forest and Grassland (NFs). Across the 72 USGS watersheds, the WaSSI model generally captured the spatial variability of multi-year mean annual and monthly Q and annual ET as evaluated by Correlation Coefficient (R = 0.71–1.0), Nash–Sutcliffe Efficiency (NS = 0.31–1.00), and normalized Root Mean Squared Error (0.06–0.48). The modeled ET and GPP by WaSSI agreed well with the remote sensing-based estimates for multi-year annual and monthly means for all the NFs. However, there were systemic discrepancies in GPP between our simulations and the satellite-based estimates on a yearly and monthly scale, suggesting uncertainties in GPP estimates in all methods (i.e., remote sensing and modeling). Overall, our assessments suggested that the WaSSI model had the capability to reconstruct the long-term forest watershed water and carbon balances at a broad scale. This model evaluation study provides a foundation for model applications in understanding the impacts of climate change and variability (e.g., droughts) on NFs ecosystem service functions

    Observation of electric current induced by optically injected spin current

    Get PDF
    A normally incident light of linear polarization injects a pure spin current in a strip of 2-dimensional electron gas with spin-orbit coupling. We report observation of an electric current with a butterfly-like pattern induced by such a light shed on the vicinity of a crossbar shaped InGaAs/InAlAs quantum well. Its light polarization dependence is the same as that of the spin current. We attribute the observed electric current to be converted from the optically injected spin current caused by scatterings near the crossing. Our observation provides a realistic technique to detect spin currents, and opens a new route to study the spin-related science and engineering in semiconductors.Comment: 15 pages, 4 figure

    Towards Net-Zero Carbon Emissions in Network AI for 6G and Beyond

    Full text link
    A global effort has been initiated to reduce the worldwide greenhouse gas (GHG) emissions, primarily carbon emissions, by half by 2030 and reach net-zero by 2050. The development of 6G must also be compliant with this goal. Unfortunately, developing a sustainable and net-zero emission systems to meet the users' fast growing demands on mobile services, especially smart services and applications, may be much more challenging than expected. Particularly, despite the energy efficiency improvement in both hardware and software designs, the overall energy consumption and carbon emission of mobile networks are still increasing at a tremendous speed. The growing penetration of resource-demanding AI algorithms and solutions further exacerbate this challenge. In this article, we identify the major emission sources and introduce an evaluation framework for analyzing the lifecycle of network AI implementations. A novel joint dynamic energy trading and task allocation optimization framework, called DETA, has been introduced to reduce the overall carbon emissions. We consider a federated edge intelligence-based network AI system as a case study to verify the effectiveness of our proposed solution. Experimental results based on a hardware prototype suggest that our proposed solution can reduce carbon emissions of network AI systems by up to 74.9%. Finally, open problems and future directions are discussed

    GBD-TS: Goal-based Pedestrian Trajectory Prediction with Diffusion using Tree Sampling Algorithm

    Full text link
    Predicting pedestrian trajectories is crucial for improving the safety and effectiveness of autonomous driving and mobile robots. However, this task is nontrivial due to the inherent stochasticity of human motion, which naturally requires the predictor to generate multi-model prediction. Previous works have used various generative methods, such as GAN and VAE, for pedestrian trajectory prediction. Nevertheless, these methods may suffer from problems, including mode collapse and relatively low-quality results. The denoising diffusion probabilistic model (DDPM) has recently been applied to trajectory prediction due to its simple training process and powerful reconstruction ability. However, current diffusion-based methods are straightforward without fully leveraging input information and usually require many denoising iterations leading to a long inference time or an additional network for initialization. To address these challenges and promote the application of diffusion models in trajectory prediction, we propose a novel scene-aware multi-modal pedestrian trajectory prediction framework called GBD. GBD combines goal prediction with the diffusion network. First, the goal predictor produces multiple goals, and then the diffusion network generates multi-modal trajectories conditioned on these goals. Furthermore, we introduce a new diffusion sampling algorithm named tree sampling (TS), which leverages common feature to reduce the inference time and improve accuracy for multi-modal prediction. Experimental results demonstrate that our GBD-TS method achieves state-of-the-art performance with real-time inference speed.Comment: Submitted to ICRA 202

    Beneath Surface Similarity: Large Language Models Make Reasonable Scientific Analogies after Structure Abduction

    Full text link
    The vital role of analogical reasoning in human cognition allows us to grasp novel concepts by linking them with familiar ones through shared relational structures. Despite the attention previous research has given to word analogies, this work suggests that Large Language Models (LLMs) often overlook the structures that underpin these analogies, raising questions about the efficacy of word analogies as a measure of analogical reasoning skills akin to human cognition. In response to this, our paper introduces a task of analogical structure abduction, grounded in cognitive psychology, designed to abduce structures that form an analogy between two systems. In support of this task, we establish a benchmark called SCAR, containing 400 scientific analogies from 13 distinct fields, tailored for evaluating analogical reasoning with structure abduction. The empirical evidence underlines the continued challenges faced by LLMs, including ChatGPT and GPT-4, in mastering this task, signifying the need for future exploration to enhance their abilities.Comment: Accepted to EMNLP 2023 (Findings

    Production of doubly charmed hadron Ξcc++\Xi_{cc}^{++} and Tcc+T_{cc}^+ in relativistic heavy ion collisions

    Full text link
    Heavy ion collisions provide a unique opportunity for studying the properties of exotic hadrons with two charm quarks. The production of Tcc+T_{cc}^+ is significantly enhanced in nuclear collisions compared to proton-proton collisions due to the creation of multiple charm pairs. In this study, we employ the Langevin equation in combination with the Instantaneous Coalescence Model (LICM) to investigate the production of Tcc+T_{cc}^+ and Ξcc++\Xi_{cc}^{++} which consists of two charm quarks. We consider Tcc+T_{cc}^+ as molecular states composed of DD and D∗D^* mesons. The Langevin equation is used to calculate the energy loss of charm quarks and DD mesons in the hot medium. The hadronization process, where charm quarks transform into each DD state as constituents of Tcc+T_{cc}^+ production, is described using the coalescence model. The coalescence probability between DD and D∗D^* is determined by the Wigner function, which encodes the information of the Tcc+T_{cc}^+ wave function. Our results show that the Tcc+T_{cc}^+ production varies by approximately one order of magnitude when different widths in the Wigner function, representing distinct binding energies of Tcc+T_{cc}^+, are considered. This variation offers valuable insights into the nature of Tcc+T_{cc}^+ through the analysis of its wave function. The Ξcc++\Xi_{cc}^{++} is treated as a hadronic state produced at the hadronization of the deconfined matter. Its production is also calculated as a comparison with the molecular state Tcc+T_{cc}^+.Comment: 7 pages, 5 figure

    Knowledge Matters: Radiology Report Generation with General and Specific Knowledge

    Full text link
    Automatic radiology report generation is critical in clinics which can relieve experienced radiologists from the heavy workload and remind inexperienced radiologists of misdiagnosis or missed diagnose. Existing approaches mainly formulate radiology report generation as an image captioning task and adopt the encoder-decoder framework. However, in the medical domain, such pure data-driven approaches suffer from the following problems: 1) visual and textual bias problem; 2) lack of expert knowledge. In this paper, we propose a knowledge-enhanced radiology report generation approach introduces two types of medical knowledge: 1) General knowledge, which is input independent and provides the broad knowledge for report generation; 2) Specific knowledge, which is input dependent and provides the fine-grained knowledge for report generation. To fully utilize both the general and specific knowledge, we also propose a knowledge-enhanced multi-head attention mechanism. By merging the visual features of the radiology image with general knowledge and specific knowledge, the proposed model can improve the quality of generated reports. Experimental results on two publicly available datasets IU-Xray and MIMIC-CXR show that the proposed knowledge enhanced approach outperforms state-of-the-art image captioning based methods. Ablation studies also demonstrate that both general and specific knowledge can help to improve the performance of radiology report generation.Comment: Medical Image Analysi

    Spontaneously induced general relativity with holographic interior and general exterior

    Get PDF
    We study the spontaneously induced general relativity (GR) from the scalar-tensor gravity. We demonstrate by numerical methods that a novel inner core can be connected to the Schwarzschild exterior with cosmological constants and any sectional curvature. Deriving an analytic core metric for a general exterior, we show that all the nontrivial features of the core, including the locally holographic entropy packing, are universal for the general exterior in static spacetimes. We also investigate whether the f(R) gravity can accommodate the nontrivial core.Comment: 16 pages, 5 figures; v3: clarification improved, revised version accepted by PL
    • …
    corecore