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We study the spontaneously induced general relativity (GR) from the scalar-tensor gravity. We
demonstrate by numerical methods that a novel inner core can be connected to the Schwarzschild
exterior with cosmological constants and any sectional curvature. Deriving an analytic core metric for
a general exterior, we show that all the nontrivial features of the core, including the locally holographic
entropy packing, are universal for the general exterior in static spacetimes. We also investigate whether
the f (R) gravity can accommodate the nontrivial core.
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1. Introduction

Recently, by studying the scalar-tensor gravity, Davidson and
Gurwich [1] found an interesting metric, for which the exterior
Schwarzschild solution of GR is spontaneously induced by a phase
transition which occurs precisely at the would-have-been event
horizon (see earlier discussion on the horizon phase transition [2]),
and the interior core is characterized by some nontrivial features.
For instance, the core has a vanishing spatial volume. This pro-
vides a simple but direct explanation of the well-known problem:
why the BH entropy is not proportional to the volume of the
system as usual. Note that the volume of normal BH cannot be
well defined [3], partially because the r ↔ t signature flip, but in
the current situation, it makes better since no such flip. More-
over, compared with the Schwarzschild BH, the Komar mass [4]
within the core is well defined (non-singular and positive). Then
the Smarr formula [5] can be extended to any inner sphere on
which the area–entropy relation is extracted. It was argued that
this provides a local realization of maximal entropy packing and
a new way of Nature’s ultimate information storage. In Ref. [6],
Davidson further designed a discrete holographic shell model to
capture the holographic entropy packing inside BHs. It is interest-
ing to see that even the logarithmic correction can be recovered.

The Davidson–Gurwich (DG) horizon phase transition has been
also found in the case with the Reissner–Nordstrom (RN) ex-
terior [7]. A natural problem is whether the phase transition
can exist for a more general exterior. Respecting the celebrated
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holographic correspondence between the supergravity in Anti-de
Sitter (AdS) space and conformal field theory (CFT) on the bound-
ary [8], one would most like to ask whether the locally holo-
graphic entropy packing can be present inside Schwarzschild-AdS
BHs. Moreover, one may also concern about the realization of the
DG horizon phase transition in the asymptotically dS exterior, since
the accelerated expansion of present universe could be derived by
the positive cosmological constant and the earlier universe is well
represented by dS-like exponentially inflationary phase.

In this Letter, by choosing a special scalar potential, we will
demonstrate the DG horizon phase transition with the Schwarz-
schild-dS/AdS exterior by numerical methods. With the mind that
the AdS/CFT correspondence usually focuses on the CFT in the flat
spacetime, we will consider the spacetime with any sectional cur-
vature. Furthermore, we will derive a general form of the core
metric by a new (semi-)analytic method and check the nontriv-
ial features.

On the other hand, in Refs. [1,7], it was suggested that the DG
phase transition can also be found in a simple theory of f (R) grav-
ity with the square curvature correction. However, we will show
that there is a subtle problem in the suggestion, that is, a pre-
condition to the equivalence between the scalar-tensor gravity and
f (R) gravity is not satisfied directly for the core metric.

2. A special scalar-tensor gravity

Consider the scalar-tensor gravity without the kinetic term

S = 1
∫ [

φR − V (φ)
]√−g d4x + SM . (1)
16π
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The gravitational field equations and the equation of motion for
the scalar field can be derived by varying this action with respect
to gμν and φ:

φGab − ∇a∇bφ + gab∇c∇cφ + 1

2
gab V (φ) − 8π Tab = 0, (2)

R − dV

dφ
= 0, (3)

where Tab denotes the energy-momentum tensor of matter.
Refs. [1,7] consider the 4-dimensional static spacetime with the

spherical symmetry. In this Letter, we will extend it to other topo-
logical cases, which is interesting especially in the asymptotically
AdS space. We write the line element as

ds2 = −eν(r) dt2 + eλ(r) dr2 + r2 dΩ2, (4)

where Ω expresses the surface with the constant sectional curva-
ture k = 0,±1.

To be consistent with the GR outside the core, the potential
V (φ) has been chosen as [1,7]

V (φ) = 3

2a

(
φ − 1

G

)2

, (5)

where the value of a can be made as small as necessary to be com-
patible with Solar System tests. But for spontaneously inducing the
GR with the cosmological constant Λ, we will modify the potential
to

V (φ) = 3

2a

(
φ − 1

G

)2

+ 4Λ

(
φ − 1

G

)
+ 2Λ

G
. (6)

Note that the second term in the RHS of Eq. (6) is added so
that Eq. (3) can be equivalent to the contracted Einstein equation
R − 4Λ = 0 when φ → 1/G outside the core.

3. Horizon phase transition: numerical method

To obtain the master equations that having a nontrivial solu-
tion, one needs to solve ν ′′ (the prime denotes the derivative with
respect to r) from Eq. (3)

ν ′′ = 1

2r2

[
−4 + 4keλ − 2eλr2 dV

dφ
+ r

(
λ′ − ν ′)(4 + ν ′)], (7)

and use it to cancel ν ′′ in the field Eq. (2). Then the independent
components of field equations can be reorganized as

φ′′ − 1

2

(
ν ′ + λ′)φ′ − 1

r

(
ν ′ + λ′)φ = 0, (8)

φ′′ + 1

2

(
ν ′ − λ′)(φ′ − 2

r
φ

)
− 2

r2

(
1 − keλ

)
φ

− 2

3
eλ

(
φ

dV

dφ
− 1

2
V

)
= 0, (9)

φ′′ +
[

1

2

(
ν ′ − λ′) + 2

r

]
φ′ − 1

3
eλ

(
φ

dV

dφ
− 2V

)
= 0. (10)

These three equations with the potential (6) are the master equa-
tions that we will solve. Here we have set T a

b = 0 for our aim.
Let us determine the boundary conditions of master equations.

Consider the perturbation around a general exterior
φ(r) = 1 + sφ1(r), λ(r) = − log
[

g(r) + sL1(r)
]
,

ν(r) = log
[
h(r) + sN1(r)

]
,

where g and h denote the metric components of general GR ex-
terior, and the constant s serves as a small expansion parameter.
Substituting these perturbative solutions into Eq. (10), one can find
a decoupled linear differential equation at leading order

φ′′
1 + 1

2

(
4

r
+ g′

g
+ h′

h

)
φ′

1 − 1

g

(
1

a
− 4

3
Λ

)
φ1 = 0.

Now we specify the exterior as

g = h = k − 2M

r
± r2

L2
,

where we have set G = 1 and Λ = ∓3/L2 for convenience. Note
that the above/below branch refer to Schwarzschild-AdS/dS space-
times. At large r, we get rid of the diverging term to stay with the
converging tail

φ1 	 r− 3
2 − 5

2

√
1± 4L2

25a . (11)

Obviously, the small parameter a should be positive/negative for
negative/positive Λ. With the aid of φ1, one can obtain L1 and N1
from the remained master Eqs. (8) and (9):

L1 	 ± 5

2L2

(
1 +

√
1 ± 4L2

25a

)
r

1
2

(
1−5

√
1± 4L2

25a

)
, (12)

N1 	 −5r

2

(
k − 2M

r

)(
1 +

√
1 ± 4L2

25a

)
r− 5

2

(
1+

√
1± 4L2

25a

)
. (13)

One should be careful that the term ∼ 2M/r in Eq. (13) is neces-
sary for the case with k = 0.

Hereto, we can perform a full numerical integration. For con-
vention, the horizon radius has been normalized to unity. Using
Eqs. (11)–(13) at some large enough distance as the boundary con-
ditions, we produce Figs. 1, 2 and 3 for the configuration of eλ , eν

and φ with negative Λ and different k, as well as Fig. 4 for the
case of positive Λ. One can find that the exterior of topological-
Schwarzschild-AdS BHs and Schwarzschild-dS is recovered at the
s → 0 limit, and the inner core differs conceptually from the in-
terior of usual BHs with s = 0 (see the dashed lines). We like
to stress three characteristic features of the overall configuration:
(1) eλ and eν are drastically suppressed inside the core; (2) there
is no signature flip at the would-have-been horizon; and (3) three
functions eλ , eν and φ at the s → 0 limit are all changed abruptly
very near the would-have-been horizon, which manifests the hori-
zon phase transition.

Moreover, one should be noted that the would-have-been hori-
zon that connects the Schwarzschild-dS exterior is located at the
cosmological horizon, instead of the event horizon in the cases of
RN and Schwarzschild-AdS exterior. From Fig. (4), one can conclude
that the total spacetime is dynamical since t denotes the spacelike
coordinate and r is timelike.

4. Analytic inner core

It this section, we will solve the master equations by a new an-
alytic method. One can find that it is consistent with the numerical
results and it is convenient to be used to check the nontrivial fea-
tures of core in the next section.
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Fig. 1. The configuration eλ , eν and φ with Λ < 0 and k = 1. The parameter in scalar potential and the AdS radius are fixed as a = 0.1 and L = 2. The blue and red lines refer
to the expansion parameters s = 0.1 and 0.01. The dashed lines depict the usual BH solutions with s = 0. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this Letter.)

Fig. 2. The configuration eλ , eν and φ with Λ < 0 and k = 0. The parameters are set as a = 0.05 and L = 1. The blue and red lines refer to the expansion parameters s = 0.1
and 0.01. The dashed lines depict the usual BH solutions with s = 0. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this Letter.)

Fig. 3. The configuration eλ , eν and φ with Λ < 0 and k = −1. The parameters are set as a = 0.01 and L = 0.5. The blue and red lines refer to the expansion parameters
s = 0.1 and 0.01. The dashed lines depict the usual BH solutions with s = 0. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this Letter.)

Fig. 4. The configuration eλ , eν and φ with Λ > 0. The parameter in scalar potential and the dS radius are set as a = −0.1 and L = 1.5. The blue and red lines refer to the
expansion parameters s = 10−3 and 10−4. The dashed lines depict the usual BH solutions with s = 0. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this Letter.)
4.1. General core metric with undetermined constants

By numerical inspection, we have shown that eλ is negli-
gible inside the would-have-been horizon (see the first feature
that we have stressed in above section). This suggests us to
simplify the master equations by imposing eλ → 0 inside the
core. With this in mind, the master equations can be translated
into
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φ′′ = φ′
(

−1

r
+ φ′

φ

)
, λ′ = 2(φ2 + rφφ′ + r2φ′2)

rφ(2φ + rφ′)
,

ν ′ = −2(φ + 2rφ′)
r(2φ + rφ′)

.

The analytic solution can be obtained as follows

φ = γ

(
r

r0

)−2+ε

, eλ = β

(
r

r0

) 6
ε −6+2ε

,

eν = α

(
r

r0

) 6
ε −4

, (14)

where α, β , γ and ε are the constants of integration. The
scalar r0 can be interpreted as the radius of the core because
the core metric (14) can be self-consistent with the condi-
tion eλ → 0 for all r < r0, if one imposes 0 < ε � 1. How-
ever, the scale r0 is fictitious at this stage since it can be ab-
sorbed into the coefficients α, β , γ . The arbitrariness will be
removed while we match the core metric with the exterior so-
lution.

The form of core metric (14) with k = 1 has been obtained for
the matter being vacuum [1] or electromagnetic field [7]. Here
we have shown that the core metric can be derived with any k
and without invoking the concrete scalar potential. Moreover, we
note that Eq. (14) also can be derived using Eq. (7) and the field
equations with general matter content, provided that the matter
satisfies eλT a

b → 0 inside the core.

4.2. Matching the core with a general exterior

In Ref. [7], an analytic method was proposed to fix the integra-
tion constants. This method solves field equations near the region
of phase transition then matches the result to the core and the RN
exterior, respectively. However, it seems difficult to extend the ana-
lytic method to more general exterior. On the other hand, we note
that there is a more simple analytic method to solve differential
equations, which directly matches two approximate solutions near
two boundaries. Recently, this analytic method was introduced to
understand the holographic superconductor [9–11]. For the case of
d � 5 dimensional spacetimes, the analytic method can explain the
qualitative features of superconductors and gives fairly good agree-
ment with numerical results. A natural idea is to use this method
to connect the core with the general exterior. Before doing that,
we would like to introduce a problem about the selection of the
matching point. In Ref. [9], the matching point is selected as the
intermediate value zm = 1/2 between the range (0 < z < 1), but in
fact, it could be rather arbitrary without changing the qualitative
features. For the case of d > 5, it was found [10] that the matching
point should be chosen in an appropriate range (zmd < zm < 1),
otherwise the behavior of holographic superconductor cannot be
imitated qualitatively. In our understanding, this means that the
behavior of the exact solution is not smooth enough to be simu-
lated by the direct matching in the whole range. Hence, one can
suspect that for some differential equations which have very sharp
peaks, the appropriate range of matching points is very small, and
even no appropriate matching point can be found. In the following,
one can find that we are just encountering both cases. Fortunately,
we still can obtain correct results by a reasonable assumption.

At first, let us consider the matching of core metric eν and the
general GR solution h. For convention, we will change the vari-
able r to z = r0/r, thus z = 1 means the would-have-been hori-
zon. The smooth matching usually requires two functions at two
boundaries and their derivatives can be connected at one point:
α

(
1

z

) 6
ε −4∣∣∣∣

zm

= h(zm), ∂z

[
α

(
1

z

) 6
ε −4]∣∣∣∣

zm

= ∂zh(z)

∣∣∣∣
zm

, (15)

which can be solved as

h(zm) = zεh′

−6 + 4ε

∣∣∣∣
zm

, (16)

α = ( 1
z )3− 6

ε εh′

−6 + 4ε

∣∣∣∣
zm

. (17)

From Eq. (16) and Eq. (17), one can find that h(z) should satisfy
|h(zm)| � 1, h′(zm)/h(zm) < 0, and α/h(zm) > 0, because ε should
be a very small positive number to suppress eλ and eν , and there
is no signature flip at the would-have-been horizon (see the first
and second features which we have stressed in above section). This
further means that the matching point is restricted at a very small
range of zm � 1. Expanding Eq. (16) near the horizon, we have

zm = 6 − 5ε

6 − 4ε
+O(zm − 1)2. (18)

Substituting Eq. (18) into Eq. (17) and using 0 < ε � 1, we obtain

α = −h′(1)

6e
ε +O(ε)2, (19)

where e is the base of the natural logarithm.
Next, we will consider the matching of core metric eλ and the

general GR solution 1/g . We require the core metric and exterior
solution can be connected at certain point, which leads to

1

β

(
1

z

)6− 6
ε −2ε∣∣∣∣

zm

= g(zm). (20)

Naively, one might also require their derivatives connecting, which
means

∂z

[
1

β

(
1

z

)6− 6
ε −2ε]∣∣∣∣

zm

= ∂z g(z)
∣∣

zm
. (21)

Combing Eq. (20) and Eq. (21), one can obtain

g(zm) = zεg′

6 − 6ε + 2ε2

∣∣∣∣
zm

, (22)

β = 2( 1
z )7− 6

ε −2ε(3 − 3ε + ε2)

εg′

∣∣∣∣
zm

. (23)

If carrying out the similar analysis below Eq. (17), one can find that
g′(zm)/g(zm) should be positive and the matching point should be
located at zm � 1. However, this result is conflicted with all the nu-
merical solutions that we have known. Analyzing the analytic core
metric (14) and Schwarzschild exterior for instance, one can find
that Eq. (20) can be easily satisfied but Eq. (21) cannot hold out-
side the horizon. This phenomenon is more clear if one considers
the direct matching between φ = γ ( r

r0
)−2+ε and the GR exterior

φ = 1, since the derivative of γ ( r
r0

)−2+ε cannot be vanishing un-
less γ = 0. For fixing two integration constants β and ε , we would
like to give up the smooth matching but expect to replace Eq. (21)
with another new condition. Here we propose that eλ , eν and φ

can be matched at the same position.1 This is a natural ansatz
since it implies that we are considering the phase transition which

1 In Refs. [9–11], the two fields are also matched at the same position. But
whether it is necessary has not been studied.
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happens at the same position (see the third feature that we have
stressed in above section). Thus, expanding Eq. (20) near the hori-
zon and using Eq. (18), we have

β = − 6

g′(1)e

1

ε
+O(ε)0. (24)

Similarly, in terms of Eq. (18) and

γ

(
1

z

)−2+ε∣∣∣∣
zm

= 1, (25)

we can fix the integration constant as γ 	 1.
Several remarks are in order. Firstly, we stress that Eq. (19),

Eq. (24) and γ 	 1 can be viable to a general exterior. The infor-
mation of general exterior manifests in h′(1) and g′(1). Thus, in
the next section, we can study the features of the core connecting
a general exterior, while not restricted in a concrete BH. Secondly,
the explicit expressions of α, β and γ demonstrate that r0 is the
horizon radius indeed. Thirdly, we can recover the results obtained
in Refs. [1,7] for the Schwarzschild or RN exterior, up to a factor
of the number e. Interestingly, the number e will not affect any
properties of the core, as we will show in next section. Fourthly,
in the above, we treat three functions (h, g and φ) as independent
functions. In fact, with the mind that there are only four constants
of integration α, β , γ and ε , one can not impose three functions
and their derivatives connecting at the same time in general. To
obtain the desired nontrivial core, one can select four conditions
as we have done, namely, Eqs. (16), (17), (20), and (25). Never-
theless, we still have treated these functions as independent ones,
because it suggests a simple but robust analytic method, which
could be applicable to the case where the undetermined functions
of some differential equations have enough constants of integra-
tion and the exact solutions do not satisfy all the conditions of the
direct smooth matching. The key point is to find the reasonable
alternative conditions.

At last, we write the general form of the core metric for any
exterior solution

ds2 = −εr0h′(r0)

6e

(
r

r0

) 6
ε −4

dt2 + 6

εr0 g′(r0)e

(
r

r0

) 6
ε −6+2ε

dr2

+ r2 dΩ2, (26)

where we have recovered r0 explicitly for later convention.

5. The nontrivial core features

In this section, we will check whether the different exterior,
namely, the factors h′(r0) and g′(r0), and the number e that char-
acterizes our analytic method, will affect the nontrivial features
of the core given in [1,7]. Before doing that, it should be noted
that the approach to the nontrivial features requires a static space-
time. For instance, the Killing vector will be involved, which is not
well defined in a dynamic spacetime. So we will take into account
the core with a general static exterior, which excludes the case of
Schwarzschild-dS exterior.

5.1. Vanishing spatial volume

Associated with any surface Ω of radius r, the spatial volume
is

V (r) = Ω

r∫ √
grrr2 dr 	

√
6ε

r0 g′(r0)e

(
r

r0

) 3
ε Ω

3
r3

0, (27)
0

where we have used Ω to express the unit area of the surface Ω .
In contrast to the corresponding finite surface area A(r) = Ωr2, it
is obvious that the spatial volume tends to vanish at the ε → +0
limit.

5.2. Constant temperature

The surface gravity of any surface inside the core can be calcu-
lated as

κ = 1

2
e−λ

√
eλ+νν ′ = −1

6

(
r

r0

)−ε

(2ε − 3)
√

g′(r0)h′(r0)

	 1

2

√
g′(r0)h′(r0). (28)

One can find that κ tends to be a constant from r = r0 to the
origin at r = 0. Moreover, this constant is exactly identified as 2π
the Hawking temperature of usual BHs. This suggests that the core
is under thermodynamic equilibrium. The nontrivial feature of the
core temperature can also be seen from the Rindler structure of
the core:

ds2
in = −κ2η2 dt2 + dη2 +

(
3κη2

εr0

) 3
ε

r2
0 dΩ2, (29)

where the proper length coordinate is

η(r) =
∫ √√√√

β

(
r

r0

) 6
ε −6+2ε

dr =
( r

r0

)−2+ 3
ε +ε

√
6r0

εeg′(r0)

( 3
ε − 2 + ε)

. (30)

Thus, Hawking’s imaginary time periodicity can be recovered from
Eq. (29). But unlike in the original GR BH, the Euclidean origin
corresponds now to the center of r = 0 rather than to r = r0. By
calculating the curvature scalar at leading order, for instance,

Rμν Rμν 	
(

r

r0

)− 12
ε +8+4ε

2e2 g′(r0)
2 + 2k2

r4
,

one should be noted that the origin is always the singularity of the
general metric.2 This problem was expected [1,7] to be solved by
involving a more complicated Lagrangian or quantum effects.

5.3. Positive-definite mass

Consider the Komar mass [4]

mK = 1

4π

∫
Σ

dΣμξν Rμν, (31)

where ξ is the Killing vector and Σ is a spatial volume with the
boundary Ω . One can prove that for any surface Ω , it satisfies a
geometric relation

mK (r) = 1

4π
κ(r)A(r), (32)

which can be reduced to the Smarr formula for usual BHs [5].
The Komar mass is meaningless in the interior of usual BHs,
where κ(r) and mK (r) can be negative and even negative infi-
nite [1,7]. Interestingly, however, mK (r) of the core metric (26) is
finite and positive-definite as desired for the gravitational mass.

2 The factor g′(r0) cannot be vanishing otherwise the core metric (26) is diver-
gent.
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5.4. Freezing light ray

One can see that the radial light rays obey the null geodesics

r(t) = rine±t/t̃ , t̃ = 6r0

ε
√

g′(r0)h′(r0)
. (33)

Thus, for an observer at asymptotic distance, a light ray sent from
some rin < r0 is very difficult to move even a small distance. In
other words, it indicates that each layer of the core acts as an
event horizon which freezes the light ray if one looks from the
outside. It hence seems reasonable to associate the entropy on any
inner surface to describe the lack of the information behind it.

5.5. Holographic entropy packing

With the mind that the surface gravity is constant inside the
core, Eq. (32) suggests that every concentric inner surface of in-
variant surface area A(r) carries a geometric fraction A(r)/A(r0)

of the total Komar mass enclosed by the would-have-been outer
horizon, which also hints the entropy packing inside the would-
have-been horizon. Furthermore, since the surface gravity can be
exactly identified as 2π the Hawking temperature of usual BHs,
one can rewrite the Smarr formula (32) as

mK (r) = 2T (r0)

(
S(r0)

r2

r2
0

)
. (34)

Note that there does not exist an analogous formula for the interior
of ordinary BHs. Taking Eq. (34) as a significant thermodynamic
equality, one could regard the expression in the parenthesis in
Eq. (34) as the entropy stored within an arbitrary inner surface

S(r) = S(r0)
r2

r2
0

= A(r)

4
. (35)

Interestingly, this is just the universal holographic entropy bound,
and what is remarkable is that the bound is locally saturated.

Hereto, none of the features of the core which we have checked
are influenced by the factors of the general exterior. Moreover, all
the features also have not been affected by the number e appeared
in the core metric (26), which supports the effectiveness of our
analytic method.

6. About the f (R) gravity

In general, the f (R) theory can be equivalent to the Brans–
Dicke theory with the vanishing Brans–Dicke parameter, if the con-
dition

φ = f R = df (R)

dR
, V = R f R − f (36)

is satisfied [12]. Therefore, in Refs. [1,7], it was suggested that
the DG horizon phase transition can also be found in a simple f (R)

gravity with the square curvature correction

f = R + a

6
R2, (37)

since Eq. (37) and Eq. (5) satisfy Eq. (36). Actually, the equation of
motion of scalar field (3) can be expressed as

R = 3

a
(φ − 1),

which is equivalent to the condition

φ = f R = 1 + a
R. (38)
3

Fig. 5. Check of the condition f R = φ for the core with Schwarzschild exterior. The
parameter a = 0.01. The blue and red lines refer to s = 0.1 and 0.01. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web version of this Letter.)

However, one should be careful that, according to the metric
ansatz (4), the field equations (2) (then the master equations) in-
clude three independent equations which are enough to determine
three undetermined functions λ, ν , and φ. Thus, in general, the
obtained solutions will not satisfy Eq. (38), which hence must be
taken as an additional constraint. In the following, we will show
both analytically and numerically that the solution with the DG
horizon phase transition does not satisfy Eq. (38) indeed.

Using the analytic core metric (26) and φ 	 ( r
r0

)−2+ε , one can
calculate

f R − φ = 1 + a

3
R − φ = 1 + 2ka

3r2
−

(
r

r0

)−2+ε

, (39)

which obviously can not be vanishing in general. Fig. 5 gives the
numerical check of Eq. (38). One can find that f R − φ is not van-
ishing in general inside the core. In particular, it increases rapidly
when the parameter s declines.

Thus, it seems difficult to argue that the DG horizon phase tran-
sition can be found in the f (R) gravity only because of the usual
equivalence between the scalar-tensor gravity and f (R) gravity.

7. Summary

In this Letter, we have studied the scalar-tensor gravity with-
out the kinetic term. Choosing a special scalar potential, we have
shown by numerical methods that there is the DG horizon phase
transition, which connects the topological-Schwarzschild-AdS or
Schwarzschild-dS exterior with the inner core that differs con-
ceptually from the interior of usual BHs. We also find an an-
alytic expression of the core connecting a general exterior. We
have checked that the static analytic core has the nontrivial fea-
tures, including the vanishing spatial volume, constant tempera-
ture, positive-definitive Komar mass, the freezing light ray, and
the locally holographic entropy packing. All these features are not
changed by the factor of the general exterior. Our results suggest
that the spontaneously induced GR with holographic interior could
be viable for very general GR exterior in static spacetimes.

Comparing the solutions with and without the cosmological
constants, one can find that the solution with Schwarzschild-dS
exterior is very different with the one with Schwarzschild or RN
exterior, that is, the would-have-been horizon that connects the
Schwarzschild-dS exterior is located at the cosmological horizon,
instead of the event horizon. On the other hand, this result is
consistent with the solution with RN exterior, since the would-
have-been horizons are both the outer horizons. The positive cos-
mological constant does not give the solution any qualitative dif-
ference. We expect that the holographic core with asymptotically
AdS exterior might lead to some interesting results in the AdS/CFT
correspondence.
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At last, we have pointed out that the DG horizon phase transi-
tion might not happen in the f (R) gravity.
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