108 research outputs found

    Low-Rank Matrix Approximations with Flip-Flop Spectrum-Revealing QR Factorization

    Full text link
    We present Flip-Flop Spectrum-Revealing QR (Flip-Flop SRQR) factorization, a significantly faster and more reliable variant of the QLP factorization of Stewart, for low-rank matrix approximations. Flip-Flop SRQR uses SRQR factorization to initialize a partial column pivoted QR factorization and then compute a partial LQ factorization. As observed by Stewart in his original QLP work, Flip-Flop SRQR tracks the exact singular values with "considerable fidelity". We develop singular value lower bounds and residual error upper bounds for Flip-Flop SRQR factorization. In situations where singular values of the input matrix decay relatively quickly, the low-rank approximation computed by SRQR is guaranteed to be as accurate as truncated SVD. We also perform a complexity analysis to show that for the same accuracy, Flip-Flop SRQR is faster than randomized subspace iteration for approximating the SVD, the standard method used in Matlab tensor toolbox. We also compare Flip-Flop SRQR with alternatives on two applications, tensor approximation and nuclear norm minimization, to demonstrate its efficiency and effectiveness

    Rotating BTZ-like black hole and central charges in Einstein-bumblebee gravity

    Full text link
    We obtain an exact rotating BTZ-like black hole solution by solving the corresponding gravitational field equations in Einstein-bumblebee gravity theory. Result is presented for the purely radial Lorentz symmetry violating and can only exist with a linear functional potential of the bumblebee field. This black hole has two horizons and an ergosphere which are dependent on the bumblebee coupling constant ℓ\ell. We study the AdS/CFT correspondence of this black hole, find that the entropy product of its inner and outer horizons is universal. So the central charges of the dual CFT on the boundary can be obtained via the thermodynamic method, and they can reappear black hole mass and angular momentum in the bulk.Comment: 12 pages, no figure. arXiv admin note: text overlap with arXiv:2201.0668

    Perindopril and a Galectin-3 Inhibitor Improve Ischemic Heart Failure in Rabbits by Reducing Gal-3 Expression and Myocardial Fibrosis

    Get PDF
    Objective: Ventricular remodeling is considered the basis of heart failure and is involved in myocardial fibrosis. This study aimed to assess perindopril and a galectin-3 inhibitor (modified citrus pectin, MCP) for their effects on ventricular remodeling and myocardial fibrosis in rabbits with ischemic heart failure.Methods: Rabbits were divided into sham, heart failure (model), MCP, and perindopril groups, respectively. A rabbit model of ischemic heart failure was established by ligating the anterior descending coronary artery. Then, the rabbits were orally administered MCP, perindopril, or saline (all at 2 ml/kg/d) for 4 weeks. Sham animals only underwent open heart surgery without further treatment. After 4 weeks, cardiac function was examined by ultrasound, and myocardial Gal-3, collagen type I, and collagen type III expression was assessed, at the gene and protein levels, by real-time PCR and Western-Blot, respectively; serum Gal-3 was detected by ELISA, and fibrosis in the infarct zone was evaluated by H&E and Masson staining.Results: In model animals, myocardial Gal-3, collagen type I, and collagen type III gene and protein expression levels were increased compared with control values, as well as serum Gal-3 amounts. Treatment with perindopril and MCP significantly alleviated the above effects, with no significant differences between the treatment groups. Pathological analyses showed that compared with model animals, treatment with MCP or perindopril resulted in relatively neatly arranged myocardial cells in the infarct zone, with significantly decreased fibrosis.Conclusion: Perindopril and the galectin-3 inhibitor MCP comparably improve ischemic heart failure in rabbits, by downregulating Gal-3 and reducing myocardial fibrosis

    Digitizing tuberculosis treatment monitoring in Wuhan city, China, 2020–2021: Impact on medication adherence

    Get PDF
    IntroductionDigital technologies can improve adherence to tuberculosis (TB) treatment. We studied the impact of digitizing TB treatment monitoring on adherence among TB patients in Wuhan, China, during 2020-2021.MethodsWe compared an electronic system introduced to monitor TB medication adherence (e-Patient Service System; e-PSS) with the p paper-based standard of care (TB Control Information System; TCIS) in terms of prescribed TB treatment doses taken by patients and patient outcome after six months of follow up. We designed a cross sectional study using retrospective data for all drug susceptible pulmonary TB patients recorded on both systems. The main indicators were: compliant first follow up visit (within 3 days of start of treatment); medication adherence (80% or more of monthly doses taken); and end of treatment success ratio.ResultsA total of 1,576 TB patients were recorded in TCIS in July September, 2020 and 1,145 TB cases were included in e-PSS in January March, 2021. The distribution of patient demographic and clinical features was similar between the two groups. A larger proportion from the e-PSS group visited the community doctor in the first three days compared with the TCIS group (48.91 versus 29. 76 % respectively). Medication adherence was also higher in the e-PSS group during the 6 months of treatment than in the TCIS group (84. 28 versus 80.3 3 % respectively). Treatment success was 92.52% in the e-PSS group and 92.07% in the TCIS group. Multivariate logistic regress ion analysis demonstrated that adjusted odds ratios for compliant first follow up visit, medication adherence and favorable treatment outcome in the e-PSS versus TCIS groups were 2.94 (95% 2.47 3.50), 1.33 (95% 1.08 1.63), and 1. 12 (95% CL: 0.79 1.57) respectively.DiscussionThis study revealed improvements in TB care following an intervention to monitor treatment digitally in patients in Wuhan, China

    Hybridization modeling of oligonucleotide SNP arrays for accurate DNA copy number estimation

    Get PDF
    Affymetrix SNP arrays have been widely used for single-nucleotide polymorphism (SNP) genotype calling and DNA copy number variation inference. Although numerous methods have achieved high accuracy in these fields, most studies have paid little attention to the modeling of hybridization of probes to off-target allele sequences, which can affect the accuracy greatly. In this study, we address this issue and demonstrate that hybridization with mismatch nucleotides (HWMMN) occurs in all SNP probe-sets and has a critical effect on the estimation of allelic concentrations (ACs). We study sequence binding through binding free energy and then binding affinity, and develop a probe intensity composite representation (PICR) model. The PICR model allows the estimation of ACs at a given SNP through statistical regression. Furthermore, we demonstrate with cell-line data of known true copy numbers that the PICR model can achieve reasonable accuracy in copy number estimation at a single SNP locus, by using the ratio of the estimated AC of each sample to that of the reference sample, and can reveal subtle genotype structure of SNPs at abnormal loci. We also demonstrate with HapMap data that the PICR model yields accurate SNP genotype calls consistently across samples, laboratories and even across array platforms

    Two new species of Erythroneurini from China (Hemiptera, Cicadellidae, Typhlocybinae)

    No full text
    The leafhopper genus Empoascanara was established by Distant (1918). So far, 81 species of the genus Empoascanara have been reported, most of which are distributed in Afrotropical or Oriental or Australian regions. The leafhopper genus Kapsa was established by Dworakowska (1972) and mainly distributed in the Orient or Australia.Two new species of the leafhopper tribe Erythroneurini from Guizhou province, China, Empoascanara dichotomus sp. nov. and Kapsa sinuose sp. nov. are described and illustrated. Two keys to distinguish the Chinese species of the genus are given

    Expression of a Novel Small Antimicrobial Protein from the Seeds of Motherwort (Leonurus japonicus) Confers Disease Resistance in Tobacco

    No full text
    Medicinal plants are valuable resources of natural antimicrobial materials. A novel small protein with antimicrobial activities, designated LJAMP1, was purified from the seeds of a medicinal herb, motherwort (Leonurus japonicus Houtt). LJAMP1 is a heat-stable protein with a molecular mass of 7.8 kDa and a determined isoelectric point of 8.2. In vitro assays showed that LJAMP1 inhibits the growth of an array of fungi and bacteria. The hyphal growth inhibition by LJAMP1 was more evident against hyphomycete fungi, such as Alternaria alternata, Cercospora personata, and Aspergillus niger. The N-terminal amino acid sequence of LJAMP1 was determined, and its coding gene was consequently cloned by the rapid amplification of cDNA ends. The gene LJAMP1 has no intron and encodes a polypeptide of 95 amino acids, in which the first 27 residues was deduced as a signal peptide. The mature LJAMP1 shows relatively low identity to plant napin-like storage proteins. Northern blot assays revealed that LJAMP1 is expressed preferentially in seeds. Bioassays in transgenic tobacco demonstrated that that overexpression of LJAMP1 significantly enhanced the resistance of tobacco against not only the fungal pathogen A. alternata but also the bacterial pathogen Ralstonia solanacearum, while no visible alteration in plant growth and development was observed
    • 

    corecore