26 research outputs found

    The influence of nanotopography on cell behaviour through interactions with the extracellular matrix - A review

    Get PDF
    [EN] Nanotopography presents an effective physical approach for biomaterial cell manipulation mediated through material-extracellular matrix interactions. The extracellular matrix that exists in the cellular microenvironment is crucial for guiding cell behaviours, such as determination of integrin ligation and interaction with growth factors. These interactions with the extracellular matrix regulate downstream mechanotransductive pathways, such as rearrangements in the cytoskeleton and activation of signal cascades. Protein adsorption onto nanotopography strongly influences the conformation and distribution density of extracellular matrix and, therefore, subsequent cell responses. In this review, we first discuss the interactive mechanisms of protein physical adsorption on nanotopography. Secondly, we summarise advances in creating nanotopographical features to instruct desired cell behaviours. Lastly, we focus on the cellular mechanotransductive pathways initiated by nanotopography. This review provides an overview of the current state-of-the-art designs of nanotopography aiming to provide better biomedical materials for the future.We acknowledge support from the Leverhulme Trust through gran t RPG-2019-252 and the Engineering and Physical Sciences Research Council (EPSRC) grant EP/P001114/1.Luo, J.; Walker, M.; Xiao, Y.; Donnelly, H.; Dalby, MJ.; Salmerón Sánchez, M. (2022). The influence of nanotopography on cell behaviour through interactions with the extracellular matrix - A review. Bioactive materials. 15:145-159. https://doi.org/10.1016/j.bioactmat.2021.11.0241451591

    Bioengineered niches that recreate physiological extracellular matrix organisation to support long-term haematopoietic stem cells

    Get PDF
    Long-term reconstituting haematopoietic stem cells (LT-HSCs) are used to treat blood disorders via stem cell transplantation. The very low abundance of LT-HSCs and their rapid differentiation during in vitro culture hinders their clinical utility. Previous developments using stromal feeder layers, defined media cocktails, and bioengineering have enabled HSC expansion in culture, but of mostly short-term HSCs and progenitor populations at the expense of naive LT-HSCs. Here, we report the creation of a bioengineered LT-HSC maintenance niche that recreates physiological extracellular matrix organisation, using soft collagen type-I hydrogels to drive nestin expression in perivascular stromal cells (PerSCs). We demonstrate that nestin, which is expressed by HSC-supportive bone marrow stromal cells, is cytoprotective and, via regulation of metabolism, is important for HIF-1α expression in PerSCs. When CD34+ve HSCs were added to the bioengineered niches comprising nestin/HIF-1α expressing PerSCs, LT-HSC numbers were maintained with normal clonal and in vivo reconstitution potential, without media supplementation. We provide proof-of-concept that our bioengineered niches can support the survival of CRISPR edited HSCs. Successful editing of LT-HSCs ex vivo can have potential impact on the treatment of blood disorders

    Nanotopography reveals metabolites that maintain the immunomodulatory phenotype of mesenchymal stromal cells

    Get PDF
    Mesenchymal stromal cells (MSCs) are multipotent progenitor cells that are of considerable clinical potential in transplantation and anti-inflammatory therapies due to their capacity for tissue repair and immunomodulation. However, MSCs rapidly differentiate once in culture, making their large-scale expansion for use in immunomodulatory therapies challenging. Although the differentiation mechanisms of MSCs have been extensively investigated using materials, little is known about how materials can influence paracrine activities of MSCs. Here, we show that nanotopography can control the immunomodulatory capacity of MSCs through decreased intracellular tension and increasing oxidative glycolysis. We use nanotopography to identify bioactive metabolites that modulate intracellular tension, growth and immunomodulatory phenotype of MSCs in standard culture and during larger scale cell manufacture. Our findings demonstrate an effective route to support large-scale expansion of functional MSCs for therapeutic purposes

    Friend or foe? Essential roles of osteoclast in maintaining skeletal health

    Get PDF
    Heightened activity of osteoclast is considered to be the culprit in breaking the balance during bone remodeling in pathological conditions, such as osteoporosis. As a “foe” of skeletal health, many antiosteoporosis therapies aim to inhibit osteoclastogenesis. However, bone remodeling is a dynamic process that requires the subtle coordination of osteoclasts and osteoblasts. Severe suppression of osteoclast differentiation will impair bone formation because of the coupling effect. Thus, understanding the complex roles of osteoclast in maintaining proper bone remodeling is highly warranted to develop better management of osteoporosis. This review aimed to determine the varied roles of osteoclasts in maintaining skeletal health and to highlight the positive roles of osteoclasts in maintaining normal bone remodeling. Generally, osteoclasts interact with osteocytes to initiate targeted bone remodeling and have crosstalk with mesenchymal stem cells and osteoblasts via secreted factors or cell-cell contact to promote bone formation. We believe that a better outcome of bone remodeling disorders will be achieved when proper strategies are made to coordinate osteoclasts and osteoblasts in managing such disorders

    Transcriptome Sequencing and Chemical Analysis Reveal the Formation Mechanism of White Florets in Carthamus tinctorius L.

    No full text
    Carthamus tinctorius L. (safflower), an economic crop and herb, has been extensively studied for its diverse chemical constituents and pharmacological effects, but the mechanism of safflower pigments (SP) leading to different colors of florets has not been clarified. In the present study, we compared the contents of SP in two varieties of safflower with white and red florets, named Xinhonghua No. 7 (WXHH) and Yunhong No. 2 (RYH). The results showed the contents of SP in RYH were higher than WXHH. To investigate genes related to SP, we obtained six cDNA libraries of florets from the two varieties by transcriptome sequencing. A total of 225,008 unigenes were assembled and 40 unigenes related to safflower pigment biosynthesis were annotated, including 7 unigenes of phenylalanine ammonia-lyase (PAL), 20 unigenes of 4-coumarate-CoA ligase (4CL), 1 unigene of trans-cinnamate 4-monooxygenase (C4H), 7 unigenes of chalcone synthase (CHS), 4 unigenes of chalcone isomerase (CHI), and 1 unigene of flavanone 3-hydroxylase (F3H). Based on expression levels we selected 16 differentially expressed unigenes (DEGs) and tested them using reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR), which was consistent with the sequencing results. Consequently, we speculated that in WXHH, 3 PALs, 3 4CLs, 1 C4H, 1 CHS, and 1 CHI, which were down-regulated, and 1 F3H, which was up-regulated, may play a key role in the formation of white florets

    Compression Limit of Two-Dimensional Water Constrained in Graphene Nanocapillaries

    No full text
    Evaluation of the tensile/compression limit of a solid under conditions of tension or compression is often performed to provide mechanical properties that are critical for structure design and assessment. Algara-Siller <i>et al.</i> recently demonstrated that when water is constrained between two sheets of graphene, it becomes a two-dimensional (2D) liquid and then is turned into an intriguing monolayer solid with a square pattern under high lateral pressure [Nature, 2015, 519, 443−445]. From a mechanics point of view, this liquid-to-solid transformation characterizes the compression limit (or metastability limit) of the 2D monolayer water. Here, we perform a simulation study of the compression limit of 2D monolayer, bilayer, and trilayer water constrained in graphene nanocapillaries. At 300 K, a myriad of 2D ice polymorphs (both crystalline-like and amorphous) are formed from the liquid water at different widths of the nanocapillaries, ranging from 6.0 to11.6 Å. For monolayer water, the compression limit is typically a few hundred MPa, while for the bilayer and trilayer water, the compression limit is 1.5 GPa or higher, reflecting the ultrahigh van der Waals pressure within the graphene nanocapillaries. The compression-limit (phase) diagram is obtained at the nanocapillary width <i>versus</i> pressure (<i>h–P</i>) plane, based on the comprehensive molecular dynamics simulations at numerous thermodynamic states as well as on the Clapeyron equation. Interestingly, the compression-limit curves exhibit multiple local minima

    Current insights into the bone marrow niche: from biology in vivo to bioengineering ex vivo

    Get PDF
    Hematopoietic stem cells (HSCs) are fundamental to the generation of the body's blood and immune cells. They reside primarily within the bone marrow (BM) niche microenvironment, which provides signals responsible for the regulation of HSC activities. While our understanding of these signalling mechanisms continues to improve, our ability to recapitulate them in vitro to harness the clinical potential of the HSC populations is still lacking. Recent studies have applied novel engineering techniques combined with traditional in vitro work to establish ex vivo BM niche models. These models exhibit promising potential for research and clinical applications. In this review, BM niche factors that regulate the HSCs in vivo are discussed and their applications in the engineering of BM biomaterial-based platforms are considered. Many questions remain regarding the heterogeneity of niche components and the interactions of HSCs with their microenvironment. A greater understanding of the niche would help to elucidate these remaining questions, leading to the development of novel therapeutic tools

    Formation of Trilayer Ices in Graphene Nanocapillaries under High Lateral Pressure

    No full text
    Using molecular dynamics simulation, we investigate the phase behavior of water confined in graphene nanocapillaries at room temperature (300 K). Here, the lateral pressure <i>P</i><sub><i>zz</i></sub> is used as the primary controlling variable, and its effect on the behavior of trilayer water is systematically studied. Three (meta)­stable trilayer (TL) crystalline/amorphous ice phases, namely, TL-ABAI, TL-ABA, and TL-AAAI, are observed in our simulations with the lateral pressure in the range of 1.0 GPa ≤ <i>P</i><sub><i>zz</i></sub> ≤ 6.0 GPa. TL-ABAI exhibits a square lattice in every layer, and the three layers exhibit the ABA stacking pattern; i.e., the oxygen atoms in the two outer layers are in registry. This new trilayer ice structure can also be viewed as a bilayer clathrate hydrate with water molecules in the middle layer serving as the guest molecules. With increasing lateral pressure, typically, the solid-to-liquid-to-solid phase transition occurs, during which the structural transformation from triangular to square-like in the ice layer is accompanied by a sudden jump in <i>P</i><sub>⊥</sub> (normal pressure) and in potential energy (per molecule). The oxygen density profiles of the three trilayer structures show a common feature; that is, the peak of the middle layer is markedly lower than that of the two outer layers. The computed diffusivity suggests that water in the middle layer exhibits behavior different from that in the two outer layers in contact with the graphene. For TL-AAAI, the diffusion of water molecules in the layer next to the graphene is faster than that in the middle layer
    corecore