37,924 research outputs found

    Topological Nematic States and Non-Abelian Lattice Dislocations

    Full text link
    An exciting new prospect in condensed matter physics is the possibility of realizing fractional quantum Hall (FQH) states in simple lattice models without a large external magnetic field. A fundamental question is whether qualitatively new states can be realized on the lattice as compared with ordinary fractional quantum Hall states. Here we propose new symmetry-enriched topological states, topological nematic states, which are a dramatic consequence of the interplay between the lattice translation symmetry and topological properties of these fractional Chern insulators. When a partially filled flat band has a Chern number N, it can be mapped to an N-layer quantum Hall system. We find that lattice dislocations can act as wormholes connecting the different layers and effectively change the topology of the space. Lattice dislocations become defects with non-trivial quantum dimension, even when the FQH state being realized is by itself Abelian. Our proposal leads to the possibility of realizing the physics of topologically ordered states on high genus surfaces in the lab even though the sample has only the disk geometry.Comment: 10 pages, 6 figures. Several new sections added in v2, including sections on even/odd effect for numerical diagnostics, analysis of domain walls, and effective topological field theor

    Superconducting Surface Impedance under Radiofrequency Field

    Full text link
    Based on BCS theory with moving Cooper pairs, the electron states distribution at 0K and the probability of electron occupation with finite temperature have been derived and applied to anomalous skin effect theory to obtain the surface impedance of a superconductor under radiofrequency (RF) field. We present the numerical results for Nb and compare these with representative RF field-dependent effective surface resistance measurements from a 1.5 GHz resonant structure

    Theoretical spin-wave dispersions in the antiferromagnetic phase AF1 of MnWO4_4 based on the polar atomistic model in P2

    Full text link
    The spin wave dispersions of the low temperature antiferromagnetic phase (AF1) MnWO4_4 have been numerically calculated based on the recently reported non-collinear spin configuration with two different canting angles. A Heisenberg model with competing magnetic exchange couplings and single-ion anisotropy terms could properly describe the spin wave excitations, including the newly observed low-lying energy excitation mode ω2\omega_2=0.45 meV appearing at the magnetic zone centre. The spin wave dispersion and intensities are highly sensitive to two differently aligned spin-canting sublattices in the AF1 model. Thus this study reinsures the otherwise hardly provable hidden polar character in MnWO4_4.Comment: 7 pages, 5 figure

    X-ray Insights into the Nature of Quasars with Redshifted Broad Absorption Lines

    Full text link
    We present ChandraChandra observations of seven broad absorption line (BAL) quasars at z=0.863z=0.863-2.516 with redshifted BAL troughs (RSBALs). Five of our seven targets were detected by ChandraChandra in 4-13 ks exposures with ACIS-S. The αox\alpha_{\rm ox} values, Δαox\Delta\alpha_{\rm ox} values, and spectral energy distributions of our targets demonstrate they are all X-ray weak relative to expectations for non-BAL quasars, and the degree of X-ray weakness is consistent with that of appropriately-matched BAL quasars generally. Furthermore, our five detected targets show evidence for hard X-ray spectral shapes with a stacked effective power-law photon index of Γeff=0.50.4+0.5\Gamma_{\rm eff}=0.5^{+0.5}_{-0.4}. These findings support the presence of heavy X-ray absorption (NH2×1023N_{\rm H}\approx 2 \times 10^{23} cm2^{-2}) in RSBAL quasars, likely by the shielding gas found to be common in BAL quasars more generally. We use these X-ray measurements to assess models for the nature of RSBAL quasars, finding that a rotationally-dominated outflow model is favored while an infall model also remains plausible with some stipulations. The X-ray data disfavor a binary quasar model for RSBAL quasars in general.Comment: 11 pages, 5 figures, and 3 table

    Riemannian Geometry of Noncommutative Surfaces

    Get PDF
    A Riemannian geometry of noncommutative n-dimensional surfaces is developed as a first step towards the construction of a consistent noncommutative gravitational theory. Historically, as well, Riemannian geometry was recognized to be the underlying structure of Einstein's theory of general relativity and led to further developments of the latter. The notions of metric and connections on such noncommutative surfaces are introduced and it is shown that the connections are metric-compatible, giving rise to the corresponding Riemann curvature. The latter also satisfies the noncommutative analogue of the first and second Bianchi identities. As examples, noncommutative analogues of the sphere, torus and hyperboloid are studied in detail. The problem of covariance under appropriately defined general coordinate transformations is also discussed and commented on as compared with other treatments.Comment: 28 pages, some clarifications, examples and references added, version to appear in J. Math. Phy

    Branching ratios and CP asymmetries of BKη()B \to K \eta^{(\prime)} decays in the pQCD approach

    Full text link
    We calculate the branching ratios and CP violating asymmetries of the four B \to K \etap decays in the perturbative QCD (pQCD) factorization approach. Besides the full leading order contributions, the partial next-to-leading order (NLO) contributions from the QCD vertex corrections, the quark loops, and the chromo-magnetic penguins are also taken into account. The NLO pQCD predictions for the CP-averaged branching ratios are Br(B+K+η)3.2×106Br(B^+ \to K^+ \eta) \approx 3.2 \times 10^{-6}, Br(B^\pm \to K^\pm \etar) \approx 51.0 \times 10^{-6}, Br(B0K0η)2.1×106Br(B^0 \to K^0 \eta) \approx 2.1 \times 10^{-6}, and Br(B^0 \to K^0 \etar) \approx 50.3 \times 10^{-6}. The NLO contributions can provide a 70% enhancement to the LO Br(B \to K \etar), but a 30% reduction to the LO Br(BKη)Br(B \to K \eta), which play the key role in understanding the observed pattern of branching ratios. The NLO pQCD predictions for the CP-violating asymmetries, such as \acp^{dir} (K^0_S \etar) \sim 2.3% and \acp^{mix}(K^0_S \etar)\sim 63%, agree very well with currently available data. This means that the deviation \Delta S=\acp^{mix}(K^0_S \etar) - \sin{2\beta} in pQCD approach is also very small.Comment: 31 pages, 11 ps/eps figures, typos corrected. A little modificatio

    Probing electronic excitations in molecular conduction

    Get PDF
    We identify experimental signatures in the current-voltage (I-V) characteristics of weakly contacted molecules directly arising from excitations in their many electron spectrum. The current is calculated using a multielectron master equation in the Fock space of an exact diagonalized model many-body Hamiltonian for a prototypical molecule. Using this approach, we explain several nontrivial features in frequently observed I-Vs in terms of a rich spectrum of excitations that may be hard to describe adequately with standard one-electron self-consistent field (SCF) theories.Comment: Significantly different content -- inadequacy of SCF approach described with simple model, and a whole new class of experiments showing gate modulated current steps discussed in terms of excitations in the molecular many-body spac
    corecore