12 research outputs found

    Activated Carbon Promotes Sulfide to Promote Short-range Nitrification and Denitrification Sludge Granulation

    No full text
    This article analyzes the factors affecting the nitrification and denitrification sludge granulation, including carbon source abundance, environmental pH, electron acceptors, SRT conditions, reaction temperature, etc. In this paper, the content of impurities in sewage is clarified, and the entire treatment process, COD removal, sludge denitrification and sedimentation, and sludge formation process analysis are analyzed. The purpose is to improve the application value of activated carbon and improve the treatment effect of sewage

    Epigenetic silencing of SALL2 confers tamoxifen resistance in breast cancer

    No full text
    Abstract Resistance to tamoxifen is a clinically major challenge in breast cancer treatment. Although downregulation of estrogen receptor‐alpha (ERα) is the dominant mechanism of tamoxifen resistance, the reason for ERα decrease during tamoxifen therapy remains elusive. Herein, we reported that Spalt‐like transcription factor 2 (SALL2) expression was significantly reduced during tamoxifen therapy through transcription profiling analysis of 9 paired primary pre‐tamoxifen‐treated and relapsed tamoxifen‐resistant breast cancer tissues. SALL2 transcriptionally upregulated ESR1 and PTEN through directly binding to the DNA promoters. By contrast, silencing SALL2 induced downregulation of ERα and PTEN and activated the Akt/mTOR signaling, resulting in estrogen‐independent growth and tamoxifen resistance in ERα‐positive breast cancer. Furthermore, hypermethylation of SALL2 promoter was found in tamoxifen‐resistant breast cancer. Importantly, in vivo experiments showed that DNA methyltransferase inhibitor‐mediated SALL2 restoration resensitized tamoxifen‐resistant breast cancer to tamoxifen therapy. These findings shed light on the mechanism of SALL2 in regulation of ER and represent a potential clinical signature that can be used to categorize breast cancer patients who may benefit from co‐therapy with tamoxifen and DNMT inhibitor

    Additional file 1: Table S1. of Nucleolar and spindle associated protein 1 promotes the aggressiveness of astrocytoma by activating the Hedgehog signaling pathway

    No full text
    Clinicopathological characteristics of studied patients and expression of NUSAP1 in 221 glioma specimens. Table S2. Correlation between NUSAP1 expression and clinicopathological characteristics of 221 glioma specimens. Table S3. Univariate and multivariate analyses of various prognostic parameters in patients with glioma by Cox-regression analysis (DOCX 21 kb

    Intracellular adenosine regulates epigenetic programming in endothelial cells to promote angiogenesis.

    No full text
    The nucleoside adenosine is a potent regulator of vascular homeostasis, but it remains unclear how expression or function of the adenosine-metabolizing enzyme adenosine kinase (ADK) and the intracellular adenosine levels influence angiogenesis. We show here that hypoxia lowered the expression of ADK and increased the levels of intracellular adenosine in human endothelial cells. Knockdown (KD) of ADK elevated intracellular adenosine, promoted proliferation, migration, and angiogenic sprouting in human endothelial cells. Additionally, mice deficient in endothelial ADK displayed increased angiogenesis as evidenced by the rapid development of the retinal and hindbrain vasculature, increased healing of skin wounds, and prompt recovery of arterial blood flow in the ischemic hindlimb. Mechanistically, hypomethylation of the promoters of a series of pro-angiogenic genes, especially for VEGFR2 in ADK KD cells, was demonstrated by the Infinium methylation assay. Methylation-specific PCR, bisulfite sequencing, and methylated DNA immunoprecipitation further confirmed hypomethylation in the promoter region of VEGFR2 in ADK-deficient endothelial cells. Accordingly, loss or inactivation of ADK increased VEGFR2 expression and signaling in endothelial cells. Based on these findings, we propose that ADK downregulation-induced elevation of intracellular adenosine levels in endothelial cells in the setting of hypoxia is one of the crucial intrinsic mechanisms that promote angiogenesis

    Intracellular adenosine regulates epigenetic programming in endothelial cells to promote angiogenesis

    No full text
    The nucleoside adenosine is a potent regulator of vascular homeostasis, but it remains unclear how expression or function of the adenosine-metabolizing enzyme adenosine kinase (ADK) and the intracellular adenosine levels influence angiogenesis. We show here that hypoxia lowered the expression of ADK and increased the levels of intracellular adenosine in human endothelial cells. Knockdown (KD) of ADK elevated intracellular adenosine, promoted proliferation, migration, and angiogenic sprouting in human endothelial cells. Additionally, mice deficient in endothelial ADK displayed increased angiogenesis as evidenced by the rapid development of the retinal and hindbrain vasculature, increased healing of skin wounds, and prompt recovery of arterial blood flow in the ischemic hindlimb. Mechanistically, hypomethylation of the promoters of a series of pro-angiogenic genes, especially for VEGFR2 in ADK KD cells, was demonstrated by the Infinium methylation assay. Methylation-specific PCR, bisulfite sequencing, and methylated DNA immunoprecipitation further confirmed hypomethylation in the promoter region of VEGFR2 in ADK-deficient endothelial cells. Accordingly, loss or inactivation of ADK increased VEGFR2 expression and signaling in endothelial cells. Based on these findings, we propose that ADK downregulation-induced elevation of intracellular adenosine levels in endothelial cells in the setting of hypoxia is one of the crucial intrinsic mechanisms that promote angiogenesis.National Key Basic Research Program of China [2012CB910402]; National Natural Science Foundation of China [81400826]; Guangdong Natural Science Foundation [2014A030312004]; Shenzhen Science and Technology Innovation Committee [20160517084712652, 20160503001803075, JCYJ20140903101709818, JSGG20140717102922014]; Shenzhen Peacock Program [KQCX2015032709315529]; American Heart Association [15POST22810024, 16GRNT30510010]; National Institutes of Health [HL095556, R01DK095862]SCI(E)ARTICLE91263-1278
    corecore