230 research outputs found

    Study on the effect and mechanism of Lacticaseibacillus rhamnosus AFY06 on inflammation-associated colorectal cancer induced by AOM/DSS in mice

    Get PDF
    IntroductionLacticaseibacillus rhamnosus AFY06 (LR-AFY06) is a microorganism isolated from naturally fermented yogurt in Xinjiang, China.MethodsIn this study, we investigated the effects and mechanisms of LR-AFY06 in a mouse model of inflammation-associated colon cancer. The mouse model was established by azoxymethane/dextran sulfate sodium (AOM/DSS) induction. The tumor number in intestinal tissues was counted, and the histopathological analysis was performed on colon tissues. Enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction were performed to measure relevant protein levels in colon tissues.ResultsLR-AFY06 treatment alleviated weight loss, increased organ index, reduced intestinal tumor incidence, improved histopathological damage, decreased the levels of inflammatory cytokines such as interleukin-6 (IL-6), interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), nuclear factor κB (NF-κB), and inducible nitric oxide synthase (iNOS) in the serum and colon tissue, downregulated the mRNA expression of inhibitor of NF-κB beta (IκBβ), p65, p50, p52, B-cell lymphoma-2 (Bcl-2), and B-cell lymphoma-extra large (Bcl-xL) in colon tissues, and increased the mRNA expression of Bid and caspase-8. The high concentration of LR-AFY06 exerted a better effect than the low concentration; however, the effect was slightly inferior to that of aspirin. Moreover, LR-AFY06 mitigated the intestinal inflammatory process and inhibited intestinal tumor development by regulating the NF-κB and apoptosis pathways.DiscussionThe present study indicates the regulatory potential of LR-AFY06 in inflammation-associated colorectal cancer in mice, providing a valuable basis for further research

    Unidirectional brain-computer interface: Artificial neural network encoding natural images to fMRI response in the visual cortex

    Full text link
    While significant advancements in artificial intelligence (AI) have catalyzed progress across various domains, its full potential in understanding visual perception remains underexplored. We propose an artificial neural network dubbed VISION, an acronym for "Visual Interface System for Imaging Output of Neural activity," to mimic the human brain and show how it can foster neuroscientific inquiries. Using visual and contextual inputs, this multimodal model predicts the brain's functional magnetic resonance imaging (fMRI) scan response to natural images. VISION successfully predicts human hemodynamic responses as fMRI voxel values to visual inputs with an accuracy exceeding state-of-the-art performance by 45%. We further probe the trained networks to reveal representational biases in different visual areas, generate experimentally testable hypotheses, and formulate an interpretable metric to associate these hypotheses with cortical functions. With both a model and evaluation metric, the cost and time burdens associated with designing and implementing functional analysis on the visual cortex could be reduced. Our work suggests that the evolution of computational models may shed light on our fundamental understanding of the visual cortex and provide a viable approach toward reliable brain-machine interfaces

    Deep UV transparent conductive oxide thin films realized through degenerately doped wide-bandgap gallium oxide

    Get PDF
    Deep UV transparent thin films have recently attracted considerable attention owing to their potential in UV and organic-based optoelectronics. Here, we report the achievement of a deep UV transparent and highly conductive thin film based on Si-doped Ga_{2}O_{3} (SGO) with high conductivity of 2500 S/cm. The SGO thin films exhibit high transparency over a wide spectrum ranging from visible light to deep UV wavelength and, meanwhile, have a very low work-function of approximately 3.2 eV. A combination of photoemission spectroscopy and theoretical studies reveals that the delocalized conduction band derived from Ga 4s orbitals is responsible for the Ga_{2}O_{3} films’ high conductivity. Furthermore, Si is shown to act as an efficient shallow donor, yielding high mobility up to approximately 60 cm^{2}/Vs. The superior optoelectronic properties of SGO films make it a promising material for use as electrodes in high-power electronics and deep UV and organic-based optoelectronic devices

    Identification of pathogenic mutations for a Wolfram syndrome pedigree by whole exome sequencing and analysis of its clinical characteristics

    Get PDF
    Objective·To identify the causative gene and mutations and describe the clinical traits in a Chinese diabetes pedigree suspected of Wolfram syndrome.Methods·A total of 12 subjects from one family were included. The proband was admitted to the Department of Endocrinology, The First Affiliated Hospital of Xinxiang Medical University, for the first time in May 2013. Then he visited the hospital for follow-up in July 2022 and in April 2023, respectively. The other members of this family included the proband′s sister, father, mother, paternal grandfather, paternal grandmother, uncle, aunt, as well as maternal grandfather, maternal grandmother, and two brothers of the proband′s mother. Clinical data of all subjects were collected. The whole exome sequencing was used to screen the pathogenic genes and mutation sites of six members of the family, and Sanger sequencing was used to verify the above results. Effects of the mutation of the pathogenic gene WFS1 in Wolfram syndrome on the function of the wolframin protein were evaluated by bioinformatics softwares, including CADD, DANN, MetaSVM, Polyphen-2, SIFT and M-CAP. The three-dimensional structures of wild-type and mutant wolframin proteins were constructed with Swiss-Model software, and visualized with PyMOL software. Cluster Omega software was used for evaluating species conservation of WFS1 gene mutation sites. JNetPRED software was used for online prediction of wolframin protein secondary structure.Results·The proband and his sister both carried R558H and S411Cfs*131 mutations, two compound heterozygous mutations of the Wolfram syndrome pathogenic gene WFS1. The proband′s father and parental grandfather both carried the R558H mutation, while the proband′s mother and maternal grandfather both carried the S411Cfs*131 mutation. The R558H mutation was a rare missense mutation, and the S411Cfs*131 mutation was a novel frameshift mutation. Bioinformatics analysis softwares predicted that the R558H mutation located in the α-helical structure of the wolframin protein. This mutation was a damage mutation and the amino acid sequence of the mutation region was highly conservative among 12 species with varying degrees of evolution, including humans.Conclusion·Two causative mutations of WFS1 gene are identified in a Chinese diabetes pedigree by whole exome sequencing. The study supplements the existing genotype and phenotype profiles of Wolfram syndrome, which can realize early diagnosis of diabetes pedigrees and help in performing timely follow-up of patients, so as to achieve early intervention and treatment of this disease

    Cell transcriptomic atlas of the non-human primate Macaca fascicularis.

    Get PDF
    Studying tissue composition and function in non-human primates (NHPs) is crucial to understand the nature of our own species. Here we present a large-scale cell transcriptomic atlas that encompasses over 1 million cells from 45 tissues of the adult NHP Macaca fascicularis. This dataset provides a vast annotated resource to study a species phylogenetically close to humans. To demonstrate the utility of the atlas, we have reconstructed the cell-cell interaction networks that drive Wnt signalling across the body, mapped the distribution of receptors and co-receptors for viruses causing human infectious diseases, and intersected our data with human genetic disease orthologues to establish potential clinical associations. Our M. fascicularis cell atlas constitutes an essential reference for future studies in humans and NHPs.We thank W. Liu and L. Xu from the Huazhen Laboratory Animal Breeding Centre for helping in the collection of monkey tissues, D. Zhu and H. Li from the Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) for technical help, G. Guo and H. Sun from Zhejiang University for providing HCL and MCA gene expression data matrices, G. Dong and C. Liu from BGI Research, and X. Zhang, P. Li and C. Qi from the Guangzhou Institutes of Biomedicine and Health for experimental advice or providing reagents. This work was supported by the Shenzhen Basic Research Project for Excellent Young Scholars (RCYX20200714114644191), Shenzhen Key Laboratory of Single-Cell Omics (ZDSYS20190902093613831), Shenzhen Bay Laboratory (SZBL2019062801012) and Guangdong Provincial Key Laboratory of Genome Read and Write (2017B030301011). In addition, L.L. was supported by the National Natural Science Foundation of China (31900466), Y. Hou was supported by the Natural Science Foundation of Guangdong Province (2018A030313379) and M.A.E. was supported by a Changbai Mountain Scholar award (419020201252), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030502), a Chinese Academy of Sciences–Japan Society for the Promotion of Science joint research project (GJHZ2093), the National Natural Science Foundation of China (92068106, U20A2015) and the Guangdong Basic and Applied Basic Research Foundation (2021B1515120075). M.L. was supported by the National Key Research and Development Program of China (2021YFC2600200).S

    Characterizing Acupuncture Stimuli Using Brain Imaging with fMRI - A Systematic Review and Meta-Analysis of the Literature

    Get PDF
    Background The mechanisms of action underlying acupuncture, including acupuncture point specificity, are not well understood. In the previous decade, an increasing number of studies have applied fMRI to investigate brain response to acupuncture stimulation. Our aim was to provide a systematic overview of acupuncture fMRI research considering the following aspects: 1) differences between verum and sham acupuncture, 2) differences due to various methods of acupuncture manipulation, 3) differences between patients and healthy volunteers, 4) differences between different acupuncture points. Methodology/Principal Findings We systematically searched English, Chinese, Korean and Japanese databases for literature published from the earliest available up until September 2009, without any language restrictions. We included all studies using fMRI to investigate the effect of acupuncture on the human brain (at least one group that received needle-based acupuncture). 779 papers were identified, 149 met the inclusion criteria for the descriptive analysis, and 34 were eligible for the meta-analyses. From a descriptive perspective, multiple studies reported that acupuncture modulates activity within specific brain areas, including somatosensory cortices, limbic system, basal ganglia, brain stem, and cerebellum. Meta-analyses for verum acupuncture stimuli confirmed brain activity within many of the regions mentioned above. Differences between verum and sham acupuncture were noted in brain response in middle cingulate, while some heterogeneity was noted for other regions depending on how such meta-analyses were performed, such as sensorimotor cortices, limbic regions, and cerebellum. Conclusions Brain response to acupuncture stimuli encompasses a broad network of regions consistent with not just somatosensory, but also affective and cognitive processing. While the results were heterogeneous, from a descriptive perspective most studies suggest that acupuncture can modulate the activity within specific brain areas, and the evidence based on meta-analyses confirmed some of these results. More high quality studies with more transparent methodology are needed to improve the consistency amongst different studies

    Biomass ash pyrolyzed from municipal sludge and its adsorption performance toward tetracycline: effect of pyrolysis temperature and KOH activation

    No full text
    Large amount of municipal sludge is difficult to handle; its resource utilization is an effective measure. In this study, the municipal sludge from sewage treatment plant was pyrolyzed without gas protection at different temperatures and potassium hydroxide (KOH) concentrations for activation. The pyrolysis products, named biomass ash, with higher surface area and enriched pore structures could be obtained at the pyrolysis temperature of 773 K. Moreover, the KOH activation for raw municipal sludge could further increase the surface area of the pyrolysis biomass ash. The maximum specific surface area was 44.71 m(2)/g, which was obtained under 2 mol/L KOH activation before pyrolysis at 773 K. And in this situation, the obtained pyrolysis biomass ash as adsorbent showed the maximum adsorption capacity of 50.75 mg/g toward tetracycline (TC). Moreover, the TC adsorption onto pyrolysis biomass ash obtained under various conditions followed the pseudo-second-order kinetic model. Adsorption thermodynamics analysis suggested the TC adsorption onto the pyrolysis biomass ash with no pre-activation was mainly due to the multi-molecule heterogeneous adsorption, while the TC adsorption onto pyrolysis biomass ash pretreated through the activation of KOH followed the monomer adsorption mechanism. This different adsorption mechanism was largely related to the pore structure, polarity, and aromaticity of the adsorbent

    Tunable infrared surface phonon–plasmon coupling in graphene-integrated polar semiconductor heterostructure

    No full text
    Within Reststrahlen bands of polar semiconductors, surface phonon–plasmon coupling is of great interest in infrared nanophotonics. Here, we demonstrate an active long-wavelength infrared device of graphene integrated with an AlN/SiC polar heterostructure. As a low-loss dielectric design, the subwavelength structure device takes advantage of interfacial photogating effect on electrostatic doping of the graphene and the interfaced SiC, and the tunable spectral behavior is originated from the hybridization of the doping-dependent surface phonon–plasmon resonances. This finding provides a steady-state manipulating method to the surface modes for the low-loss nanophotonic devices on SiC platform, and the graphene Fermi level tunable to cross the Dirac point in a steady response even makes the intrinsic graphene photodetectors feasible
    • …
    corecore