84 research outputs found

    Evolution of iron-rich intermetallics and its effect on the mechanical properties of Al–Cu–Mn–Fe–Si alloys after thermal exposure and high-temperature tensile testing

    Get PDF
    Si addition is commonly used to modify the iron-rich intermetallics in Al–Cu–Mn–Fe alloys, which is beneficial to increasing the use of recycled aluminum. Most of the available research has focused on the effect of Si content on the room-temperature mechanical properties of Al–Cu–Mn–Fe alloys. To expand the application of Al–Cu–Mn–Fe–Si alloys as light heat-resistant structural components in the automotive and aerospace industries, it is of great importance to investigate the evolution of iron-rich intermetallics and its effect on the fracture behavior of Al–Cu–Mn–Fe–Si alloys after thermal exposure and high-temperature tensile testing. In this work, the evolution of iron-rich intermetallics and the high-temperature mechanical properties of heat-treated Al-6.5Cu-0.6Mn-0.5Fe alloys with different Si contents after thermal exposure and high-temperature tensile testing were assessed by tensile tests, image analysis, scanning electron microscopy, X-Ray diffraction, transmission electron microscopy, and atomic probe tomography. The results indicate that the Al-6.5Cu-0.6Mn-0.5Fe alloys with 0.1Si and 0.5Si additions have excellent and stable high-temperature mechanical properties after long thermal exposure, which are better than those of most heat-resistant Al alloys. The high performance of the high-temperature mechanical properties is attributed to the high heat resistance of secondary intermetallics and precipitated particles. The addition of Si is detrimental to the strength of Al-6.5Cu-0.6Mn-0.5Fe alloys after long thermal exposure. This can be attributed to the solid-state phase transformation of iron-rich intermetallics from α-Fe to β-Fe, which results in the increase of needle-like Fe-rich phases and Si particles, the agglomeration of secondary intermetallics, and the consumption of Al2_{2}Cu phases

    GWAS on multiple traits identifies mitochondrial ACONITASE3 as important for acclimation to submergence stress

    Get PDF
    Mitochondrial ACONITASE3 is important for the acclimation to submergence stress by integrating carbon and nitrogen metabolism and impacting stress signaling pathways. Flooding causes severe crop losses in many parts of the world. Genetic variation in flooding tolerance exists in many species; however, there are few examples for the identification of tolerance genes and their underlying function. We conducted a genome-wide association study (GWAS) in 387 Arabidopsis (Arabidopsis thaliana) accessions. Plants were subjected to prolonged submergence followed by desubmergence, and seven traits (score, water content, Fv/Fm, and concentrations of nitrate, chlorophyll, protein, and starch) were quantified to characterize their acclimation responses. These traits showed substantial variation across the range of accessions. A total of 35 highly significant single-nucleotide polymorphisms (SNPs) were identified across the 20 GWA datasets, pointing to 22 candidate genes, with functions in TCA cycle, DNA modification, and cell division. Detailed functional characterization of one candidate gene, ACONITASE3 (ACO3), was performed. Chromatin immunoprecipitation followed by sequencing showed that a single nucleotide polymorphism in the ACO3 promoter co-located with the binding site of the master regulator of retrograde signaling ANAC017, while subcellular localization of an ACO3-YFP fusion protein confirmed a mitochondrial localization during submergence. Analysis of mutant and overexpression lines determined changes in trait parameters that correlated with altered submergence tolerance and were consistent with the GWAS results. Subsequent RNA-seq experiments suggested that impairing ACO3 function increases the sensitivity to submergence by altering ethylene signaling, whereas ACO3 overexpression leads to tolerance by metabolic priming. These results indicate that ACO3 impacts submergence tolerance through integration of carbon and nitrogen metabolism via the mitochondrial TCA cycle and impacts stress signaling during acclimation to stress.Peer reviewe

    Empower the Science of Organ Donation by Multidisciplinary Collaboration

    Get PDF
    Inter-discipline is formed by the interpenetration and integration of multiple disciplines, which has become a notable trend involving interdisciplinary activities and a combination of research and development. Learned from experience worldwide, the management mode for organ donation and procurement activities varies among countries, but the core of the disciplinary construction of organ donation remains the same. The theoretical basis and practice of organ donation is not purely a matter of coordination, but its ground of knowledge is built upon multidisciplinary integration and its implementation relies on a joint-effort approach and requires collaboration of multiple teams. From the sociological viewpoint, organ donation represents the gift of life for transplant patients, which founds the key element in enhancing the harmony of society. While, from a practical perspective, its professionalism has been widely recognized by the international medical community. As a complex medical and social act, organ donation is a medical-centered subject with sociological, humanistic, ethical, psychologic, and juristic attributes. This chapter will provide an overview of how multidisciplinary collaboration empowers the science of organ donation, followed by the summary of recent efforts taken in China in pursuit of this goal as an example

    Low-mass dark matter search results from full exposure of PandaX-I experiment

    Full text link
    We report the results of a weakly-interacting massive particle (WIMP) dark matter search using the full 80.1\;live-day exposure of the first stage of the PandaX experiment (PandaX-I) located in the China Jin-Ping Underground Laboratory. The PandaX-I detector has been optimized for detecting low-mass WIMPs, achieving a photon detection efficiency of 9.6\%. With a fiducial liquid xenon target mass of 54.0\,kg, no significant excess event were found above the expected background. A profile likelihood analysis confirms our earlier finding that the PandaX-I data disfavor all positive low-mass WIMP signals reported in the literature under standard assumptions. A stringent bound on the low mass WIMP is set at WIMP mass below 10\,GeV/c2^2, demonstrating that liquid xenon detectors can be competitive for low-mass WIMP searches.Comment: v3 as accepted by PRD. Minor update in the text in response to referee comments. Separating Fig. 11(a) and (b) into Fig. 11 and Fig. 12. Legend tweak in Fig. 9(b) and 9(c) as suggested by referee, as well as a missing legend for CRESST-II legend in Fig. 12 (now Fig. 13). Same version as submitted to PR

    A Search for Light Fermionic Dark Matter Absorption on Electrons in PandaX-4T

    Full text link
    We report a search on a sub-MeV fermionic dark matter absorbed by electrons with an outgoing active neutrino using the 0.63 tonne-year exposure collected by PandaX-4T liquid xenon experiment. No significant signals are observed over the expected background. The data are interpreted into limits to the effective couplings between such dark matter and electrons. For axial-vector or vector interactions, our sensitivity is competitive in comparison to existing astrophysical bounds on the decay of such dark matter into photon final states. In particular, we present the first direct detection limits for an axial-vector (vector) interaction which are the strongest in the mass range from 25 to 45 (35 to 50) keV/c2^2
    • …
    corecore