112 research outputs found

    A charge-sensing region in the stromal interaction molecule 1 luminal domain confers stabilization-mediated inhibition of soce in response to s-nitrosylation

    Get PDF
    Store-operated Ca2 entry (SOCE) is a major Ca2 signaling pathway facilitating extracellular Ca2 influx in response to the initial release of intracellular endo/sarcoplasmic reticulum (ER/ SR) Ca2 stores. Stromal interaction molecule 1 (STIM1) is the Ca2 sensor that activates SOCE following ER/SR Ca2 depletion. The EF-hand and the adjacent sterile -motif (EFSAM) domains of STIM1 are essential for detecting changes in luminal Ca2 concentrations. Low ER Ca2 levels trigger STIM1 destabilization and oligomerization, culminating in the opening of Orai1-composed Ca2 channels on the plasma membrane. NO-mediated S-nitrosylation of cysteine thiols regulates myriad protein functions, but its effects on the structural mechanisms that regulate SOCE are unclear. Here, we demonstrate that S-ni-trosylation of Cys49 and Cys56 in STIM1 enhances the thermodynamic stability of its luminal domain, resulting in suppressed hydrophobic exposure and diminished Ca2 depletion– dependent oligomerization. Using solution NMR spectroscopy, we pinpointed a structural mechanism for STIM1 stabilization driven by complementary charge interactions between an electropositive patch on the core EFSAM domain and the S-nitrosy-lated nonconserved region of STIM1. Finally, using live cells, we found that the enhanced luminal domain stability conferred by either Cys49 and Cys56 S-nitrosylation or incorporation of negatively charged residues into the EFSAM electropositive patch in the full-length STIM1 context significantly suppresses SOCE. Collectively, our results suggest that S-nitrosylation of STIM1 inhibits SOCE by interacting with an electropositive patch on the EFSAM core, which modulates the thermodynamic stability of the STIM1 luminal domain

    S-Nitrosylation of STIM1 by Neuronal Nitric Oxide Synthase Inhibits Store-Operated Ca\u3csup\u3e2 +\u3c/sup\u3e Entry

    Get PDF
    Store-operated Ca2 + entry (SOCE) mediated by stromal interacting molecule-1 (STIM1) and Orai1 represents a major route of Ca2 + entry in mammalian cells and is initiated by STIM1 oligomerization in the endoplasmic or sarcoplasmic reticulum. However, the effects of nitric oxide (NO) on STIM1 function are unknown. Neuronal NO synthase is located in the sarcoplasmic reticulum of cardiomyocytes. Here, we show that STIM1 is susceptible to S-nitrosylation. Neuronal NO synthase deficiency or inhibition enhanced Ca2 + release-activated Ca2 + channel current (ICRAC) and SOCE in cardiomyocytes. Consistently, NO donor S-nitrosoglutathione inhibited STIM1 puncta formation and ICRAC in HEK293 cells, but this effect was absent in cells expressing the Cys49Ser/Cys56Ser STIM1 double mutant. Furthermore, NO donors caused Cys49- and Cys56-specific structural changes associated with reduced protein backbone mobility, increased thermal stability and suppressed Ca2+ depletion-dependent oligomerization of the luminal Ca2 +-sensing region of STIM1. Collectively, our data show that S-nitrosylation of STIM1 suppresses oligomerization via enhanced luminal domain stability and rigidity and inhibits SOCE in cardiomyocytes

    Comparison of initial cell retention and clearance kinetics after subendocardial or subepicardial injections of endothelial progenitor cells in a canine myocardial infarction model

    Get PDF
    Neither intravenous nor intracoronary routes provide targeted stem cell delivery to recently infarcted myocardium in sufficient quantities. Direct routes appear preferable. However, most prior studies have used epicardial injections, which are not practical for routine clinical use. The objective of this study was to compare cell retention and clearance kinetics between a subepicardial and a subendocardial technique. Methods: We evaluated 7 dogs with each technique, using 111In-tropolone-labeled endothelial progenitor cells and serial SPECT/CT for 15 d after injection. Results: In vivo indium imaging demonstrated comparable degrees of retention: 57% ± 15% for the subepicardial injections and 54% ± 26% for the subendocardial injections. Clearance half-lives were also similar at 69 ± 26 and 60 ± 21 h, respectively. Conclusion: This study demonstrates that subendocardial injections, clinically more practical, show clearance kinetics comparable to those of subepicardial injections and will facilitate the ultimate clinical use of this treatment modality. Copyright © 2010 by the Society of Nuclear Medicine, Inc

    The Predictive Potentiality of Salivary Microbiome for the Recurrence of Early Childhood Caries

    Get PDF
    The aim of this study was to investigate the variation of the salivary microbiota in the recurrence of early childhood caries (ECC), and to explore and verify the potential microbial indicators of ECC recurrence. Saliva samples from kindergarten children were tracked every 6 months for 1 year. Finally, in total 28 children and 84 samples were placed on the analysis phase: 7 children with ECC recurrence made up the ECC-recurrence (ER) group, 6 children without ECC recurrence constituted the non-ECC-recurrence (NER) group, and 15 children who kept ECC-free were set as the ECC-free (EF) group. DNA amplicons of the V3-V4 hypervariable region of the bacterial 16S rDNA were generated and sequencing was performed using Illumina MiSeq PE250 platform. No statistically significant differences of the Shannon indices were found in both cross-sectional and longitudinal comparisons. Furthermore, both principal coordinates analysis (PCoA) and heatmap plots demonstrated that the salivary microbial community structure might have potentiality to predict ECC recurrence at an early phase. The relative abundance of Fusobacterium, Prevotella, Leptotrichia, and Capnocytophaga differed significantly between the ER and NER groups at baseline. The values of area under the curve (AUC) of the four genera and their combined synthesis in the prediction for ECC recurrence were 0.857, 0.833, 0.786, 0.833, and 0.952, respectively. The relative abundance of Fusobacterium, Prevotella, Leptotrichia, and Capnocytophaga and their combination showed satisfactory accuracy in the prediction for ECC recurrence, indicating that salivary microbiome had predictive potentiality for recurrence of this disease. These findings might facilitate more effective strategy to be taken in the management of the recurrence of ECC

    Attenuation of Mycoplasma hyopneumoniae Strain ES-2 and Comparative Genomic Analysis of ES-2 and Its Attenuated Form ES-2L

    Get PDF
    Mycoplasma hyopneumoniae causes swine respiratory disease worldwide. Due to the difficulty of isolating and cultivating M. hyopneumoniae, very few attenuated strains have been successfully isolated, which hampers the development of attenuated vaccines. In order to produce an attenuated M. hyopneumoniae strain, we used the highly virulent M. hyopneumoniae strain ES-2, which was serially passaged in vitro 200 times to produce the attenuated strain ES-2L, and its virulence was evidenced to be low in an animal experiment. In order to elucidate the mechanisms underlying virulence attenuation, we performed whole-genome sequencing of both strains and conducted comparative genomic analyses of strain ES-2 and its attenuated form ES-2L. Strain ES-2L showed three large fragment deletion regions including a total of 18 deleted genes, compared with strain ES-2. Analysis of single-nucleotide polymorphisms (SNPs) and indels indicated that 22 dels were located in 19 predicted coding sequences. In addition to these indels, 348 single-nucleotide variations (SNVs) were identified between strains ES-2L and ES-2. These SNVs mapped to 99 genes where they appeared to induce amino acid substitutions and translation stops. The deleted genes and SNVs may be associated with decreased virulence of strain ES-2L. Our work provides a foundation for further examining virulence factors of M. hyopneumoniae and for the development of attenuated vaccines

    The odontoblastic differentiation of dental mesenchymal stem cells: molecular regulation mechanism and related genetic syndromes

    Get PDF
    Dental mesenchymal stem cells (DMSCs) are multipotent progenitor cells that can differentiate into multiple lineages including odontoblasts, osteoblasts, chondrocytes, neural cells, myocytes, cardiomyocytes, adipocytes, endothelial cells, melanocytes, and hepatocytes. Odontoblastic differentiation of DMSCs is pivotal in dentinogenesis, a delicate and dynamic process regulated at the molecular level by signaling pathways, transcription factors, and posttranscriptional and epigenetic regulation. Mutations or dysregulation of related genes may contribute to genetic diseases with dentin defects caused by impaired odontoblastic differentiation, including tricho-dento-osseous (TDO) syndrome, X-linked hypophosphatemic rickets (XLH), Raine syndrome (RS), hypophosphatasia (HPP), Schimke immuno-osseous dysplasia (SIOD), and Elsahy-Waters syndrome (EWS). Herein, recent progress in the molecular regulation of the odontoblastic differentiation of DMSCs is summarized. In addition, genetic syndromes associated with disorders of odontoblastic differentiation of DMSCs are discussed. An improved understanding of the molecular regulation and related genetic syndromes may help clinicians better understand the etiology and pathogenesis of dentin lesions in systematic diseases and identify novel treatment targets

    The Time Course of the Influence of Valence and Arousal on the Implicit Processing of Affective Pictures

    Get PDF
    In the current study, we investigated the time course of the implicit processing of affective pictures with an orthogonal design of valence (negative vs. positive) by arousal (low vs. high). Previous studies with explicit tasks suggested that valence mainly modulates early event-related potential (ERP) components, whereas arousal mainly modulates late components. However, in this study with an implicit task, we observed significant interactions between valence and arousal at both early and late stages over both parietal and frontal sites, which were reflected by three different ERP components: P2a (100–200 ms), N2 (200–300 ms), and P3 (300–400 ms). Furthermore, there was also a significant main effect of arousal on P2b (200–300 ms) over parieto-occipital sites. Our results suggest that valence and arousal effects on implicit affective processing are more complicated than previous ERP studies with explicit tasks have revealed
    corecore