77 research outputs found

    Intraspecific variations in leaf functional traits of Cunninghamia lanceolata provenances

    Get PDF
    BackgroundStudies on intra-specific variability in leaf functional traits is important to evaluate adaptation of the species to predicted climate change, and to develop long-term conservation strategy. The main objectives were to investigate the relationship between the functional traits leaves and C, N, P stoichiometry of Chinese fir from different geographical provenances and their relationship with the main environmental factors of provenance.ResultsIn this study, we measured 12 leaf functional traits on 36-year-old Cunninghamia lanceolata trees from 13 provenances. Analysis of variance (ANOVA) was performed to examine the variability. Redundancy analysis (RA) was computed to examine the relationship between geo-climatic factors of provenance origin and leaf functional traits while Pearson's correlation coefficient was computed to assess inter-trait correlations. The results showed statistically significant differences (P < 0.01) in intraspecific leaf traits among provenances, except leaf P content. The relationships among leaf traits are consistent with the general trend observed in the leaf economic spectrum. Mean annual temperature appeared to be a key factor that influences intraspecific leaf traits variability compared to mean annual precipitation.ConclusionThese results provide useful insights about adaptation of leaf trait of Chinese fir in a changing climatic condition. Thus, our findings shed light on the importance of interspecific trait variability in Chinese fir and the potential effect of climate change

    Plastic Responses in Growth, Morphology, and Biomass Allocation of Five Subtropical Tree Species to Different Degrees of Shading

    Get PDF
    We investigated how different degrees of shading affected growth, morphology, and biomass allocation in seedlings from two coniferous and three broadleaved species. The experiment was conducted in a shade house over a 1-year period. Our results showed that under increasing shade, seedlings from most species exhibited lower total biomass, net assimilation rates, relative growth rates, root mass ratios, and root/shoot ratios. In contrast, the slenderness quotients, leaf area ratios, and specific leaf areas increased with increasing shade. For coniferous species, growth traits were relatively more plastic (responsive to shade) than morphology or biomass allocation traits, whereas for broadleaved species, growth and biomass allocation were the most shade-sensitive traits. When comparing coniferous versus broadleaved species, the former had a higher growth plasticity index and lower allocation plasticity than the latter. Root biomass and stem mass ratio were the most and least plastic traits in response to shading. Our results indicate that shade differentially affects coniferous and broadleaved species in terms of their growth, morphology, and biomass allocation. These findings have important implications for the establishment and maintenance of mixed-species stands

    Rhizosphere soil nutrients and bacterial community diversity of four broad-leaved trees planted under Chinese fir stands with different stocking density levels

    Get PDF
    ObjectiveRhizosphere soil nutrients and bacterial diversity of four broad-leaved tree species underplanted in Chinese fir plantation with different stand density levels were analyzed to reveal characteristics of the rhizosphere soil environment and selection of suitable underplanted tree species. MethodsChinese fir plantation with three density levels (900, 1,200, and 1,875 stems ha(-1), respectively) were selected and underplanted with Michelia macclurei, Schima superba, Phoebe zhennan, and Tsoongiodendron odorum. The rhizosphere soil nutrients and bacterial community of the broad-leaved tree species were determined after 4 years. ResultsSignificant differences in rhizosphere nutrient content were detected among different tree density levels, where the contents of total K, available K and available P in 900 stems ha(-1) stands were significantly higher than the other stocking density levels. There were also significant differences in the contents of total C, total N, total K, available K and available P in the rhizosphere soils of the four trees species, while there were no significant differences in pH and total P. Rhizosphere soil nutrient contents were higher under S. superba and M. macclurei than under P. zhennan and T. odorum. The rhizosphere soil nutrient contents and bacterial diversity decreased with the increase of stand density, and the bacterial diversity showed significant differences in the rhizosphere soils of P. zhennan, T. odorum and S. superba when underplanted in different stand densities. The bacterial diversity was positively correlated with the available P content of rhizosphere soils, suggesting that soil available P content plays an important role in shaping the structure of bacterial community. ConclusionThe nutrient contents and bacterial diversity of rhizosphere soils of underplated broad-leaved species decreased with increasing stand density of Chinese fir plantation. Rhizosphere soils of M. macclurei and S. superba were rich in nutrient contents and bacterial diversity. Thus, low density of Chinese fir plantation (900 stems ha(-1)) underplanted with M. macclurei and S. superba is suitable for the establishment of mixed forest, which will facilitate better tree growth and maintaining soil fertility to realize sustainable management of forests

    Seedling emergence and early growth of Chinese fir under different light levels and seed positions: implications for natural regeneration

    Get PDF
    Chinese fir, Cunninghamia lanceolata (Lamb.) Hook. (Taxodiaceae), is an evergreen conifer primarily distributed in southern China. This species exhibits very poor natural regeneration, possibly due to low light and a thick litter layer. To improve the understanding of the natural regeneration capacity of Chinese fir, in this study, we conducted a shade house experiment to determine the optimum light requirements and seed positions for seedling emergence and early growth. The experiment involved five light levels (100%, 60%, 40%, 15%, 5% of full sunlight) and four seed positions (1 cm beneath the soil surface without litter, on the soil surface without soil–seed contact, on the soil surface and covered with litter, and 1 cm beneath the soil surface and covered with litter). Seedling emergence was highest at 5%–15% sunlight, whereas seedling height, root length, root mass, stem mass, leaf mass, and total mass were highest at 60% sunlight. For each light level, seed position significantly affected emergence and growth. The above-litter position inhibited seedling emergence and survival, while the below-litter position favored seedling emergence and early growth, particularly under high light levels. Based on these results, to enhance natural regeneration of Chinese fir, we recommend periodical thinning to increase light into the understory after successful seedling emergence. We also recommend sowing seeds deeper into the litter to improve soil contact and moisture conditions

    Strength and size of phosphorus-rich patches determine the foraging strategy of Neyraudia reynaudiana

    Get PDF
    BackgroundUnder natural conditions, soil nutrients are heterogeneously distributed, and plants have developed adaptation strategies to efficiently forage patchily distributed nutrient. Most previous studies examined either patch strength or patch size separately and focused mainly on root morphological plasticity (increased root proliferation in nutrient-rich patch), thus the effects of both patch strength and size on morphological and physiological plasticity are not well understood. In this study, we examined the foraging strategy of Neyraudia reynaudiana (Kunth) Keng ex Hithc, a pioneer grass colonizing degraded sites, with respect to patch strength and size in heterogeneously distributed phosphorus (P), and how foraging patchily distributed P affects total plant biomass production. Plants were grown in sand-culture pots divided into 1/2, 1/4, 1/6 compartments and full size and supplied with 0+0/30, 0+7.5/30 and 7.5+0/30mg P/kg dry soil as KH2PO4 or 0+15/15, 0+18.5/ 18.5, 7.5+15/15mgkg-1 in the homogenous treatment. The first amount was the P concentration in the central region, and that the second amount was the P concentration in the outer parts of the pot.ResultsAfter 3months of growth under experimental conditions, significantly (p&lt;0.05) high root elongation, root surface area, root volume and average root diameter was observed in large patches with high patch strength. Roots absorbed significantly more P in P-replete than P-deficient patches. Whole plant biomass production was significantly higher in larger patches with high patch strength than small patches and homogeneous P distribution.ConclusionThe result demonstrates that root morphological and physiological plasticity are important adaptive strategies for foraging patchily distributed P and the former is largely determined by patch strength and size. The results also establish that foraging patchily distributed P resulted in increased total plant biomass production compared to homogeneous P distribution

    Phenotypic Plasticity of Cunninghamia lanceolata (Lamb.) Hook. Seedlings in Response to Varied Light Quality Treatments

    Get PDF
    Effects of light quality on phenotypic plasticity in Cunninghamialanceolata (Lamb.) Hook. seedlings during growth and development, and the underlying mechanisms, were investigated. The seedlings showed distinct morphological adjustments when exposed to an equal photosynthetic photon flux density (400 mu mol.m(-2).s(-1)) of different light qualities: monochromatic blue (BL), monochromatic red (RL), monochromatic far-red (FrL), mixed RL and FrL at 1:1 (RFr1:1L), mixed RL and FrL at 1:2 (RFr1:2L), and multi-wavelength white (WL, control). Compared with WL, FrL and BL significantly promoted height increment. However, BL was unfavorable for root growth. The seedling biomass was lower and the root-to-shoot ratio was smaller under BL. RL promoted leaf area enlargement, root growth, axillary bud number, and increased the root-to-shoot ratio, but inhibited stem elongation. Low R/Fr ratios or increased FrL proportion increased seedling stem elongation. The seedling growth under RFr1:1L treatment was poorer than that under other treatments; however, the number of axillary buds was the highest. The plasticity of leaf morphology traits was lower in different treatments, and that of axillary bud traits was crucial in the adaptation of C. lanceolata to light quality. Precise management of light quality and wavelength in controlled environments may maximize the economic efficiency of forest production and enhance its quality

    Responses of Chinese fir and Schima superba seedlings to light gradients: Implications for the restoration of mixed broadleaf-conifer forests from Chinese fir monocultures

    Get PDF
    Although Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) plantations are widely grown for timber production in southern China, they have low biodiversity and provide limited ecosystem services. To address this problem, C. lanceolata are increasingly mixed with broadleaf Schima superba Gardn. & Champ. (Theaceae). The success of these mixed plantations relies on introducing each species in the appropriate sequence, which requires understanding how tree species respond to light variations. We therefore compared S. superba and C. lanceolata seedling light tolerance in shaded houses under five light gradients (5%, 15%, 40%, 60%, and 100% sunlight). Our findings showed that S. superba seedlings exhibited greater net height increment (ΔHt), net diameter growth (ΔDia), leaf area, root mass, stem mass, leaf mass, and total mass under low light conditions (15% sunlight). However, as sunlight increased, these growth variables became higher in C. lanceolata seedlings. With more sunlight, both species experienced a drop in height to diameter ratio (HDR), and specific leaf area (SLA), but an elevated root to shoot ratio. Additionally, under the same light levels, S. superba seedlings exhibited greater leaf area and root to shoot ratio than C. lanceolata seedlings. Our results suggested that S. superba might be more suitable for underplanting beneath a heavy canopy due to its shade-tolerant traits. In contrast, C. lanceolata was less shade-tolerant, having an optimum seedling growth under full sunlight. These findings suggest that underplanting S. superba seedlings in C. lanceolata monoculture plantation (i.e., underplanting regeneration approach) could be a better silvicultural alternative than simultaneously planting both seedlings
    • …
    corecore