47 research outputs found

    Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks

    Full text link
    Factorization Machines (FMs) are a supervised learning approach that enhances the linear regression model by incorporating the second-order feature interactions. Despite effectiveness, FM can be hindered by its modelling of all feature interactions with the same weight, as not all feature interactions are equally useful and predictive. For example, the interactions with useless features may even introduce noises and adversely degrade the performance. In this work, we improve FM by discriminating the importance of different feature interactions. We propose a novel model named Attentional Factorization Machine (AFM), which learns the importance of each feature interaction from data via a neural attention network. Extensive experiments on two real-world datasets demonstrate the effectiveness of AFM. Empirically, it is shown on regression task AFM betters FM with a 8.6%8.6\% relative improvement, and consistently outperforms the state-of-the-art deep learning methods Wide&Deep and DeepCross with a much simpler structure and fewer model parameters. Our implementation of AFM is publicly available at: https://github.com/hexiangnan/attentional_factorization_machineComment: 7 pages, 5 figure

    Element dependence of enhancement in optics emission from laser-induced plasma under spatial confinement

    Get PDF
    In this study, the element dependence of spatial confinement effects in LIBS has been studied. Hemispheric cavities were used to confine laser-induced plasmas from aluminum samples with other trace elements. The enhancement factors were found to be dependent on the elements. Equations describing the element dependent enhancement factors were successfully deduced from the local thermodynamic equilibrium conditions, which have also been verified by the experimental results. Research results show that enhancement factors in LIBS with spatial confinement depend on the temperature, electron density, and compression ratio of plasmas, and vary with elements and atomic/ionic emission lines selected. Generally, emission lines with higher upper level energies have higher enhancement factors. Furthermore, with enhancement factor of a spectral line, temperatures and electron densities of plasmas known, enhancement factors of all the other elements in the plasmas could be estimated by the equations developed in this study

    Mechano-stimulated modifications in the chloroplast antioxidant system and proteome changes are associated with cold response in wheat

    Get PDF
    BACKGROUND: Mechanical wounding can cause morphological and developmental changes in plants, which may affect the responses to abiotic stresses. However, the mechano-stimulation triggered regulation network remains elusive. Here, the mechano-stimulation was applied at two different times during the growth period of wheat before exposing the plants to cold stress (5.6 °C lower temperature than the ambient temperature, viz., 5.0 °C) at the jointing stage. RESULTS: Results showed that mechano-stimulation at the Zadoks growth stage 26 activated the antioxidant system, and substantially, maintained the homeostasis of reactive oxygen species. In turn, the stimulation improved the electron transport and photosynthetic rate of wheat plants exposed to cold stress at the jointing stage. Proteomic and transcriptional analyses revealed that the oxidative stress defense, ATP synthesis, and photosynthesis-related proteins and genes were similarly modulated by mechano-stimulation and the cold stress. CONCLUSIONS: It was concluded that mechano-stimulated modifications of the chloroplast antioxidant system and proteome changes are related to cold tolerance in wheat. The findings might provide deeper insights into roles of reactive oxygen species in mechano-stimulated cold tolerance of photosynthetic apparatus, and be helpful to explore novel approaches to mitigate the impacts of low temperature occurring at critical developmental stages. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12870-015-0610-6) contains supplementary material, which is available to authorized users

    Group contextualization for video recognition

    No full text
    Learning discriminative representation from the complex spatio-temporal dynamic space is essential for video recognition. On top of those stylized spatio-temporal computational units, further refining the learnt feature with axial contexts is demonstrated to be promising in achieving this goal. However, previous works generally focus on utilizing a single kind of contexts to calibrate entire feature channels and could hardly apply to deal with diverse video activities. The problem can be tackled by using pair-wise spatio-temporal attentions to recompute feature response with cross-axis contexts at the expense of heavy computations. In this paper, we propose an efficient feature refinement method that decomposes the feature channels into several groups and separately refines them with different axial contexts in parallel. We refer this lightweight feature calibration as group contextualization (GC). Specifically, we design a family of efficient element-wise calibrators, i.e., ECal-G/S/T/L, where their axial contexts are information dynamics aggregated from other axes either globally or locally, to contextualize feature channel groups. The GC module can be densely plugged into each residual layer of the off-the-shelf video networks. With little computational overhead, consistent improvement is observed when plugging in GC on different networks. By utilizing calibrators to embed feature with four different kinds of contexts in parallel, the learnt representation is expected to be more resilient to diverse types of activities. On videos with rich temporal variations, empirically GC can boost the performance of 2D-CNN (e.g., TSN and TSM) to a level comparable to the state-of-the-art video networks. Code is available at https://github.com/haoyanbin918/Group-Contextualization

    Phenology-Based Residual Trend Analysis of MODIS-NDVI Time Series for Assessing Human-Induced Land Degradation

    No full text
    Land degradation is a widespread environmental issue and an important factor in limiting sustainability. In this study, we aimed to improve the accuracy of monitoring human-induced land degradation by using phenological signal detection and residual trend analysis (RESTREND). We proposed an improved model for assessing land degradation named phenology-based RESTREND (P-RESTREND). This method quantifies the influence of precipitation on normalized difference vegetation index (NDVI) variation by using the bivariate linear regression between NDVI and precipitation in pre-growing season and growing season. The performances of RESTREND and P-RESTREND for discriminating land degradation caused by climate and human activities were compared based on vegetation-precipitation relationship. The test area is in Western Songnen Plain, Northeast China. It is a typical region with a large area of degraded drylands. The MODIS 8-day composite reflectance product and daily precipitation data during 2000⁻2015 were used. Our results showed that P-RESTREND was more effective in distinguishing different drivers of land degradation than the RESTREND. Degraded areas in the Songnen grasslands can be effectively detected by P-RESTREND. Therefore, this modified model can be regarded as a practical method for assessing human-induced land degradation

    A Survey on Large-Scale Machine Learning

    No full text
    corecore