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ABSTRACT

Vision multi-layer perceptrons (MLPs) have shown promising per-

formance in computer vision tasks, and become the main com-

petitor of CNNs and vision Transformers. They use token-mixing

layers to capture cross-token interactions, as opposed to the multi-

head self-attention mechanism used by Transformers. However,

the heavily parameterized token-mixing layers naturally lack mech-

anisms to capture local information and multi-granular non-local

relations, thus their discriminative power is restrained. To tackle

this issue, we propose a new positional spacial gating unit (PoSGU).

It exploits the attention formulations used in the classical relative

positional encoding (RPE), to e�ciently encode the cross-token

relations for token mixing. It can successfully reduce the current

quadratic parameter complexity$ (# 2) of visionMLPs to$ (# ) and
$ (1). We experiment with two RPE mechanisms, and further pro-

pose a group-wise extension to improve their expressive power with

the accomplishment of multi-granular contexts. These then serve

as the key building blocks of a new type of vision MLP, referred to

as PosMLP. We evaluate the e�ectiveness of the proposed approach

by conducting thorough experiments, demonstrating an improved

or comparable performance with reduced parameter complexity.

For instance, for a model trained on ImageNet1K, we achieve a

performance improvement from 72.14% to 74.02% and a learnable

parameter reduction from 19.4" to 18.2" . Code could be found at

https://github.com/Zhicaiwww/PosMLP.

CCS CONCEPTS

• Computing methodologies → Computer vision representa-

tions.
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Figure 1: (a), (b) and (c) present the basic network block, the

SGU used by gMLP [35], and the proposed PoSGU in a group-

wise implementation,respectively. (d) and (e) visualize the

projection weights of the SGU and PoSGU,respectively. Here,

the red anchor represents a query token. The rainbow dis-

tribution shows the intensity of attention logits to its sur-

rounding tokens. (f) shows the sample e�ciency results for

ImageNet2012 with modi�ed sample ratio setting per class.

1 INTRODUCTION

In computer vision, the three types of mainstream architecture

CNN, Transformer and MLP support the backbone neural network

https://github.com/Zhicaiwww/PosMLP
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design. CNNs directly operate on 2D images, while vision trans-

formers andMLPs convert each input image to a sequence of tokens.

Subsequently, they rely on di�erent operational approaches to ex-

tract information from the images. CNNs use convolutions to model

local content patterns, and use the weight sharing mechanism to

improve design e�ciency [30, 44]. To capture cross-token interac-

tion, vision transformers use the multi-head self-attention (MHSA)

mechanism, and MLPs use the token-mixing layers. As compared

to CNNs, the vision transformers and MLPs are notably better at

their global receptive �eld, i.e. MHSA and token-mixing, and have

the advantage of unsaturated discriminatory power when process-

ing hyper-scale datasets [14, 45]. But they bear the weakness of

requiring large-scale pre-training, e.g., having more model parame-

ters and thus consuming more training examples, due to the weak

inductive bias [12, 45, 47]. Various research e�ort has been made to

address this limitation for vision transformers, resulting in a series

of new transformer design, e.g., locality-enhanced transformers

(LocalViT) [25], Swin transformer [36] and NesT transformer [56].

However, there is a research gap in vision MLP development,

where the latest designs are still demanding in parameterization

and pre-training. For instance, to improve over MLP-Mixer [45]

that is the �rst MLP-based vision model, gMLP [35] uses a gating

mechanism and a single-token fully connected (FC) layer, referred

to as the spacial gating unit (SGU), to achieve e�cient aggregation

of spacial information. But it results in a dramatically increased pa-

rameter number as the token number grows larger. More recently,

building on the idea of token-free substitute, axial shifted MLP

(AS-MLP) [31], Permute-MLP [23], Hire-MLP [17] and spatial shift

MLP (s2-MLP) [52] design di�erent spatial shift variants to simu-

late token interaction. As a result, they have managed to remove

parameters depending on token dimensions but created extra FC

layers instead. This has actually increased their parameter numbers.

Additionally, their spatial shift replacement has caused a loss of

intrinsic property when aggregating the global features in a token

FC layer, i.e., explicit shift operation should gain global receptive

�eld by deepening the network.

To �ll in this research gap, we propose to utilize the relative

positional encoding (RPE) [43] to improve the vision MLPs, aiming

at reducing the model parameterization but without sacri�cing the

model expressive power. Our enhanced MLP is named as PosMLP.

The design is motivated by the fact that the ultimate goal of a token-

mixing MLP is to model the relations across tokens (spatial pixels),

why not directly parameterize the relations in an e�cient way.

Therefore, we make the following contributions:

• We propose a positional spacial gating unit (PoSGU) to

model cross-token interactions. Its main building block is a

PosToken FC layer developed based on RPE that has been

proven to be e�cient to encode the interaction between

the key and query items in attention modelling.

• We implement two RPE mechanisms in the PoSGU. As

compared to the quadratic parameter complexity $ (# 2) of
gMLP, the �rst mechanism can reduce the complexity to

$ (# ) while the later to $ (1).
• Additionally, we propose a group-wise extension to achieve

the multi-granular spacial feature aggregation and enhance

the expressive power of the RPE.

Figure 1 highlights the architecture di�erence between PoSGU (the

GGQPE version by default, see Sec 4.1) and SGU from the gMLP that

both are sharing the same basic network block design. Subgraphs (d)

and (e) show that our token-mixing logits initialized in PoSGU are

highly concentrated around the query token and the cross-token

correlation is modeled by learned non-isotropic Gaussian distribu-

tion. After a thorough evaluation, the results show that a simple

PoSGU can result in satisfactory performance with a signi�cantly

reduced parameter number, e.g. a comparable performance to the

transformer-based DeiT-S [47] as in Figure 1 (f). For instance, for a

model trained on ImageNet1K with 0.5 sample ratio, our approach

can achieve a performance improvement from 72.14% to 74.02% and

a parameter (learnable) reduction from 19.4" to 18.2" .

2 RELATED WORK

Vision transformers. In recent years, vision transformers have

shown promising image classi�cation results for his strong power

on modeling long-range dependencies over pixels [6, 16, 36, 55].

The vision transformer (ViT) [14] is the pilot work that extends

the linguistical-style transformers on visual content modeling by

treating a 2D image as a sequence of 1D tokens (patches) while

remaining the vision robustness [2]. DeiT[47] further adopts distil-

lation [22] from a CNN teacher and extensive data augmentations

to successfully boost the image classi�cation performance. To be

friendly to more downstream tasks like object detection and seg-

mentation [34], PVT [49] provides the hierarchical architecture

for e�cient vision transformer. Swin transformer [36] further ma-

nipulates shifted windows into the hierarchical architecture and

gains notable performance improvement. To further enhance with

local information, CoAtNet [10] explicitly integrates convolutional

blocks into the feedforward transformer network.

Vision MLPs. MLP-like models were also developed under the

premise of large-scale pre-training[45, 46]. Equipped with normal-

ization [1] and residual connection [20], the architecture of stacking

pure linear layers can also achieve comparable results with CNNs.

However, the token mixing MLP in MLP-Mixer [45] and gMLP [35]

introduce few inductive biases and constraint the input resolution.

To overcome these, bunch of works are built upon the consumption-

free shift&rearrange operation, e.g. s2-MLP [52] that uses spatial

shi�ng MLP to replace token mixing MLP, AS-MLP[31] that axially

shift feature in the spacial dimension, Vision Permutator [23] that

uses Permute-MLP to mix height and width information simultane-

ously, and Hire-MLP [17] that uses the pairwise rearrange&restore

manipulations to realize local and global feature exchanging over

patches. Besides, Rep-MLP [12] implemented reparameterization to

merge trained convolution layers into a pure MLP network for eval-

uation. Di�erent from these aforementioned methods, our PosMLP

�rst implements positional encoding as a fully prior to explicitly

model token interactions in MLP, and hence achieves better sample

and parameter e�ciency.

Positional Encoding. Transformer is inherently lack of sensi-

tivity to token position, and so is MLPs. Positional encoding (PE) is

a fairly mature method implemented in transformer to overcome

this problem [28, 39, 40]. There are commonly two kinds of posi-

tional encoding (PE) methods, i.e., absolute PE (APE) and relative
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PE (RPE). Sinusoidal positional encoding is the �rst APE imple-

mented in vanilla transformer [48], aiming to introduce a prior

of absolute token position distinction. RPE was �rst introduced

to amplify the natural sensitivity of relative distance in linguis-

tic expressions[21, 27, 43] and late extensively adopted in vision

transformers [29] which requires a strong prior of 2D displacement

between pixels. Original RPE is based on a learnable relative posi-

tional embedding and thus introduces a soft positional inductive

bias. CAPE [32] utilizes an enhaced APE strategy to realize the

model generalization as introduced by RPE. By contrast, Quadratic

Positional Encoding (QPE) [8] was proposed to bring a pre-de�ned

relative position embedding to multi-head self attention (MHSA)

such that it can act like a convolutional layer. ConViT [15] integrates

QPE into DeiT [47] and achieves a higher sample e�ciency. Our

work further develops Generalized QPE into a group-wise variant

for vision MLPs, such that it obtains better expression ability.

3 PRELIMINARIES

In this section, we �rst introduce the design of spacial gating unit

(SGU) of gMLP. Next, we summarize a general representation for

two representative relative positional encoding (RPE) methods,

i.e., learnable relative positional encoding (LRPE) and generalized

quadratic positional encoding (GQPE), which are commonly used

by vision Transformers.

3.1 Spatial Gating Unit

SGU is the main building block of gMLP [35], used to enable cross-

token interactions. Let X ∈ R#×3 be the token representations,

where # and 3 denotes the token number and embedding (chan-

nel) dimension, respectively. SGU splits the token representations

into two independent parts along the dimension, denoted by X1 ∈
R
#× Ě

2 and X2 ∈ R#× Ě
2 . It uses a linear projection on one part

to calculate a gating mask, then uses the mask to re�ne element-

wisely the other part. Denote the re�ned token representations by

Z ∈ R#× Ě
2 , and it is computed by

Z =

(

WNorm(X1) + Ę
)

» X2, (1)

where W ∈ R#×# , Ę ∈ R# and » denotes the Hadamard product.

Norm(·) here is the !0~4A#>A< [1]. The projection matrix W is

for feature re�nement, and the gating operation encourages higher-

order information interactions [35]. As shown in the SGU diagram

in Figure 1(b), the operation X̃1
= Norm(X1) is referred to as the

Norm layer, and the operation of
(

WX̃1 + Ę
)

is referred to as the

Token FC layer. Speci�cally, the Hadamard product is representing

as the gating operation.

3.2 Relative Positional Encoding

Both absolute and relative positional encoding mechanisms have

been widely used in vision transformers [7, 13, 29]. We introduce

only RPE since our research focus is to model the pairwise re-

lations between tokens. The core idea of RPE is to enhance the

calculation of the attention A ∈ R#×# by considering the position

di�erence between tokens. In general, the token position is marked

in a square window1
(√

#,
√
#
)

and therefore Ă lies in the range
[

−
√
# + 1,

√
# − 1

]

×
[

−
√
# + 1,

√
# − 1

]

. A relative position is a 2-

dimensional vector Ă8, 9 = Ħ 9 − Ħ8 where Ħ8 ,Ħ 9 are the positions of

the 8th and 9 th tokens in the square window. For simplicity, we omit

the head dimension (i.e., single-head). The pipeline formulation of

RPE can be generalized as

A8, 9 := Softmax9

(

W8, 9 +WA
8, 9

)

, (2)

WA
8, 9 := ĬĨ¦

Ăğ,Ġ
, (3)

W8, 9 := Q8,:K
¦
9,:, (4)

where 1 f 8, 9 f # , Q and K are the query and key matrices in

a transformer, and Ĭ ∈ R�Ħĥĩ is a projection vector that aggre-

gates the relative positional embedding ĨĂ ∈ R�Ħĥĩ to obtain the

attention bias. Di�erent RPE approaches vary in the formulation of

ĨĂ andWA
8, 9 . The two representative RPE algorithms of learnable

relative positional encoding (LRPE) [19, 24, 42] and generalized

quadratic positional encoding (GQPE) [8] are used in our work.

Learnable Relative Positional Encoding: LRPE simply sets

�?>B = 1. Consequently, both Ĭ and Ĩ in WA collapse to a single

scalar and E is further set to constant 1. It constructs a learnable

relative positional embedding dictionary Ĩ
lrpe

Ă
∈ R

(

2
√
#−1

)2

with a

parameter complexity of O(# ). Here, Ă is used as an index.

Generalized Quadratic Positional Encoding: GQPE was

�rstly proposed for MHSA. It mimics the function of the convolu-

tional layer by forming a non-isotropic Gaussian distribution over

the query token:

A
gqpe
8, 9 := Softmax9

(

−1

2

(

Ă8, 9 − Ā
)

Σ−1 (Ă8, 9 − Ā
)¦

)

, (5)

= Softmax9

(

ĬĨ¦
Ăğ,Ġ

)

. (6)

To obtain such a distribution pattern, the learnable vector Ĭ is

parameterized by a center of attention ∆ ∈ R2 and a positive semi-

de�nite covariance matrix Σ = ΓΓ¦, where Γ ∈ R2×2. In total, there

are 6 parameters. The parameter complexity is O(1). Subsequently,

Ĭgqpe =

[

(

Σ−1∆
)

1
,
(

Σ−1∆
)

2
,−1

2
Σ−1
1,1,−

1

2
Σ−1
2,2,−Σ

−1
1,2

]¦
, (7)

Ĩ
gqpe

Ă
=

[

ĂG , Ă~, Ă
2
G , Ă

2
~, ĂGĂ~

]¦
. (8)

The relative positions ĨĂ of GQPE is not learnable and is determined

only by the relative position Ă = (ĂG , Ă~). For the attention map of

the 8-th query token,Ā controls the displacement of the distribution

center relative to the position Ħ8 , and Σ controls the distribution

function where it is semi-de�nite positive such that the attention

maximum will always be guaranteed at Ā = Ă .

Since GQPE introduces a hard relative position prior, we view

it as a hard RPE similar to the hard inductive bias introduced by

CNN [15].

4 POSITIONAL MLP (POSMLP)

The Token FC layer used in classical vision MLPs bears the weak-

ness of poor inductive biases [45] and has a quadratic parameter

1In vision transformers, e.g., Swin transformer [36], a square window (
√
# ×

√
#=#

tokens) is commonly used.
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complexity O(# 2) with respect to the number of tokens. We pro-

pose to transfer the idea of RPE used in attention formulation for

transformers to formulate the projection matrix in SGU. This intro-

duces extra positional information in the Token FC layer of SGU.

Therefore, we name the improved SGU as PoSGU, and the improved

vision MLP with such new units as PosMLP. This proposal can suc-

cessfully reduce the parameter complexity of token-mixing to only

O(# ) or O(1) without sacri�cing the model performance.

4.1 Positional SGU (PoSGU)

Starting from the classical SGU operation
(

WX̃1 + Ę
)

» X2 as ex-

plained in preliminaries, we omit Ę since the bias term Ę operates

independently on X2. We will also discuss this in the experiment

later. This results in
(

WX̃1
)

» X2, based on which we propose the

base formulation of PoSGU, as

Z =

(

(

W +WA ) X̃1
)

» X2, (9)

whereWA encodes the positional information and is formulated by

taking advantage of the attention weight formulation in Eq. (3).

LRPE-based PoSGU:When following the LRPE principal,W

can be simply modi�ed to W + Ĩ
lrpe

Ă
in order to cooperate the

positional information. This results in

Zlrpe-M =

(

W + Ĩ
lrpe

Ă

)

Norm(X1) » X2, (10)

where the relative positional encoding matrixWA can be calculated

by Ĩ
lrpe

Ă
. It is worth to mention that we remove the Softmax opera-

tion, due to its co-occurrence with the LayerNorm operation2 will

cause a signi�cant performance drop. Note that our LRPE-M shares

a similar spirit with the bias mode of the iRPE [50]. Through em-

pirical observations, e.g., in the Figure S7 where we visualized each

projection matrix and plotted the logits intensity corresponding to

the query token. We notice that the positional embedding Ĩ
lrpe

Ă
can

learn more localities and can reserve partially its non-locality in

deeper layers, while the e�ect ofW is weak and sometimes it can

be redundant. Therefore, we remove W and this results in

Zlrpe = Ĩ
lrpe

Ă
Norm(X1) » X2 . (11)

More importantly, this revised operation signi�cantly decreases

the parameter complexity.

GQPE-based Group-wise PoSGU: An alternative is to follow

the GQPE principal. The particular bene�t is its extremely low

parameter complexity O(1). Meanwhile, to increase the model

expressive power, we enhance it with a group-wise strategy [18].

Inspired by the multi-head operation used by transformers and the

group convolution operation used by CNNs, we �nd it bene�cial to

split further the token embeddings along their channel dimension,

and then project di�erent splits with di�erent learnable vectors.

Speci�cally, after splitting the token representations X ∈ R#×3

into X1 ∈ R#× Ě
2 and X2 ∈ R#× Ě

2 , we further split each into B

feature groups:
{

X1
1,X

1
2, · · · ,X

1
B

}

∈ R#× Ě
2ĩ and

{

X2
1,X

2
2, · · · ,X

2
B

}

∈
R
#× Ě

2ĩ . Following the idea of Eq. ( 6), we have, for the B-th group,

Z
gqpe
B = A

gqpe
B X1

B » X2
B , (12)

2The Norm operation here is used to enable a direct comparison with gMLP.

A
gqpe
B,8, 9 = Softmax9

(

Ĭ
gqpe
B Ĩ

gqpe¦

Ăğ,Ġ

)

. (13)

Then, we concatenate all the group representations:

Zgqpe = Concat
(

Z
gqpe
2 ,Z

gqpe
2 , · · · ,ZgqpeB

)

. (14)

The B groups share the same relative positional embedding Ĩ
gqpe

Ă
but di�erent learnable vector Ĭ

gqpe
B . We omit the Norm layer here

since the co-occurrence of Norm and Softmax will cause a perfor-

mance drop (check Section 5.3) The calculation builds on multi-

ple pairwise shift attention centers {∆1,∆2, · · · ,∆B } and covari-

ance matrices {Σ1,Σ2, · · · ,ΣB }. A {shift attention center, covariance

matix} pair can lead to a particular granularity of contextual infor-

mation (local or non-local, mostly determined by the form of Σ as

Sec.5.3 shows). Therefore, this group-wise operation can improve

over the original GQPE, being able to �exibly attend multiple granu-

larities of contextual information in a single layer. It can potentially

enrich the captured spatial information and ease the training (see

Section 5.1 for results). It is worth to mention that this group-wise

strategy can be easily transferred to the LRPE mechanism, resulting

in the GLRPE. We provide a simple illustration in Figure S6, to

highlight the di�erence between the classical Token FC and the

proposed token-mixing methods based on LRPE and GQPE.PE and

GQPE-based token-mixing methods in this section, see Figure S6.

4.2 PosMLP Architecture

We propose a new vision MLP model PosMLP, of which each ba-

sic block is integrated with our proposed PoSGU. For illustration

purpose, Figure 2 depicts the model architecture of a tiny PosMLP,

which is mainly composed of the convolutional downsampling

(ConvPE + ConvPM) and PosMLP block.

Convolutional Patch Embedding (ConvPE): The ConvPE

block receives the input of a raw image with a shape � ×, × 3 and

outputs the patch embeddings. The module shares the similar spirit

as [51] in transformers, which stacks several convolutional layers

to improve the stability of the model training. In our implementa-

tion, as shown in Figure 2(b), the block contains three consecutive

convolutional layers. The use of convolutions adequately encodes

the local information in visual modelling. Finally, this operation

results in a �
4 × ,

4 ×� feature map.

Convolutional Patch Merging (ConvPM): Inspired by Nest

Transformer [56] that uses the “Convolution+Maxpooling” to per-

form the spacial downsampling with the ratio of 2 and a channel

expansion ratio of 2, we adopt a depth-wise convolution with stride

2 to achieve a similar e�ect.

Positional encoding MLP: The architecture of a PosMLP block

is illustrated in Figure 2 (d). It has a similar structure to gMLP, but

replaces the SGU with the proposed PoSGU. Thanks to the RPE

mechanisms, it is able to model both local and non-local informa-

tion, thus can entirely replace the token-mixing operations in the

original vision MLPs.

Windows Partitioning: To be fed into a PosMLP block, the

image input is blocked into multiple non-overlapping windows of

the given size and sequenced as tokens. Then it is reshaped back

to a feature map for performing convolutional downsampling. In

our implementation, we assign di�erent window sizes to di�erent

stages by considering the feature map size, i.e., 14 × 14 for the

�rst three stages “Stage 1,2,3”, resulting in the 14 × 14 = 196 (i.e.,
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Figure 2: The proposed PosMLP: (a) Overall architecture; (b) Convolutional Patch Embedding block; (c) Convolutional Patch

Merging block; (d) Architecture of PosMLP block with PoSGU.

# = 196) tokens (pixels) and the corresponding 16, 4, 1 feature

windows respectively, and 7×7 for the “Stage 4” and 49 tokens with

1 feature windows. Themost obvious advantage of using awindows-

based structure is that it can signi�cantly reduce the computational

cost [36] and realize parameters sharing among windows.

Architecture Variant:We build our model variants similar to

the classic works like Swin-Transformer, including three 4-stages

PosMLP-T/S/Bwhere the capital letters “T, S, B” refer to “Tiny, Small,

Base” models. The main di�erence between PosMLP-T, PosMLP-

S, and PosMLP-B lies in the model size which is led by separately

setting the feature channel� to 96, 128, and 192. All the other hyper-

parameters such as window size, group numbrt B , and channel

expansion ratio W are kept the same among the three variants. Table

S11 lists the detailed settings of these model architectures.

5 EXPERIMENTS

In this section, we report the experimental results evaluated on

ImageNet1K and COCO2017. We also conduct an ablation study to

validate the impacts of hyperparameters and key components of

our model. Moreover, we also give the visualized results to clearly

observe the functions of the introduced positional encoding in

spatial relation modeling. All the experiments are conducted on

4/8× 3090 GPUs.

5.1 RPE in Vision MLP

We�rstly give a comprehensive comparison for the proposed PoSGU

modules. Both gMLP and our PosMLP are employed as backbone ar-

chitectures. Table 1 lists their model complexity w.r.t token-mixing,

extra FLOPs and top-1 accuracy by performing image classi�cation

on ImageNet1K0.5. Note that the extra FLOPs means the additional

computational cost of gating unit compared with base SGU.

Observation and analysis.As shown in this table, the proposed

PoSGU modules consistently outperform SGU regardless of back-

bones. This provides a strong proof for the feasibility of the idea

of manually parameterizing cross-token correlation. Speci�cally,

LRPE, which is a simpli�ed LRPE-M by removing the Token FC

weights W in Eq. (9), has almost the same top-1 accuracy (76.93 vs.

76.95 of LRPE-M for PosMLP) but signi�cantly reduces the model

complexity from O(# 2) to O(# ). Moreover, the group-wise RPE

versions GLRPE andGGQPE, which further emphasizes themultiple

granularities of token contexts, achieve better performance than the

non-group-wise counterparts. Finally, by considering the parameter

Table 1: Comparison of di�erent RPE module variants with

respect to mode complexity, extra FLOPs and top-1 accuracy

using gMLP and our PosMLP as backbones. SGU refers to

the spatial gating unit proposed by gMLP. PoSGU refers to

our proposed positional spatial gating unit. PoSGU has four

variants, i.e., LRPE-M, LRPE, and two corresponding group-

wise modules GLRPE and GGQPE.

Model Module
Token-mixing
complexity

Extra FLOPs Top-1 acc.

gMLP

SGU O(# 2 ) � 72.14

PoSGU

LRPE-M O(# 2 ) O (# 2 ) 73.96(+1.82)
LRPE O(# ) O (# 2 ) 72.44(+0.30)
GLRPE O(# ) O (B# 2 ) 74.56(+2.42)
GGQPE O(1) O (B# 2 ) 74.02(+1.88)

PosMLP

SGU O(# 2 ) � 76.33

PoSGU

LRPE-M O(# 2 ) O (# 2 ) 76.95(+0.62)
LRPE O(# ) O (# 2 ) 76.93(+0.60)
GLRPE O(# ) O (B# 2 ) 77.41(+1.08)
GGQPE O(1) O (B# 2 ) 77.40(+1.07)

e�ciency, we choose GGQPE with only O(1) parameter complexity

as the instantiation of our PoSGU. It is worth noting that the extra

FLOPs of LRPE comes from the assignment operation while GQPE

has an extra cost of Multiply-Add cumulation (MACs). However,

as analyzed in Appendix, the extra FLOPs incurred by GGQPE is

negligible compared with the model architecture block that has

an O(A<3# 2) (A<3 >> B , B denotes the group number). Thus, for

better illustration of direct parameterization of cross-token relation,

we use GGQPE as our defalut setting for our PosMLP.

5.2 Image Classi�cation

Dataset and implementation. The image classi�cation is bench-

marked on the popular ImageNet1K [11] dataset. The training/validation

partitioning follows the o�cial protocol, where ∼1.2M images are

for training and 50K images are for validation under 1K seman-

tic categories. The top-1 accuracy (%) is reported for performance

comparison. In the training, we adopt the same data augmenta-

tions used in DeiT [47], including RandAugment [9], Mixup [54],

Cutmix [53], random erasing [57] and stochastic depth [26]. Expo-

nential moving average (EMA) [38] is also used for training accel-

eration. We train the model for 300 epochs with batch-size 120 per

GPU and the cosine learning rate schedule where the initial value

is set to 1×10−3 and minimal value is of 1×10−5. The AdamW [37]

optimizer with the momentum of 0.9 and weight decay of 0.067 is

adopted. Inference is performed on a single 224 × 224 center crop

using the validation set.
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Table 2: Performance comparison of PosMLP variants with

the state-of-the-arts such as CNNs, vision transformers and

vision MLPs on ImageNet1K dataset.

Method Input Size #Param. FLOPs Top-1 Acc.

Tiny Models

RegNetY-4G [41] 2242 21M 4.0G 80.0

Swin-T [36] 2242 29M 4.5G 81.3

Nest-T [56] 2242 17M 5.8G 81.5

gMLP-S [35] 2242 20M 4.5G 79.6

Hire-MLP-S [17] 2242 33M 4.2G 81.8

ViP-Small/7 [23] 2242 25M 6.9G 81.5

PosMLP-T 2242 21M 5.2G 82.1

PosMLP-T 3842 21M 17.7G 83.0

Small Models

RegNetY-8G [41] 2242 39M 8.0G 81.7

Swin-S [36] 2242 50M 8.7G 83.0

Nest-S [56] 2242 38M 10.4G 83.3

Mixer-B/16 [45] 2242 59M 11.7G 76.4

S2-MLP-deep [52] 2242 51M 9.7G 80.7

ViP-Medium/7 [23] 2242 55M 16.3G 82.7

Hire-MLP-B [17] 2242 58M 8.1G 83.1

AS-MLP-S[31] 2242 50M 8.5G 83.1

PosMLP-S 2242 37M 8.7G 83.0

Base Models

RegNetY-16G [41] 2242 84M 16.0G 82.9

Swin-B [36] 2242 88M 15.4G 83.3

Nest-B [56] 2242 68M 17.9G 83.8

gMLP-B [35] 2242 73M 15.8G 81.6

ViP-Large/7 [23] 2242 88M 24.3G 83.2

Hire-MLP-L [17] 2242 96M 13.5G 83.4

PosMLP-B 2242 82M 18.6G 83.6

Results.We compare our PosMLPs with current SOTAs on Ima-

geNet1K, including the CNN-based ResNetY models, Transformer-

based Nest and Swin models, and other vision MLPs, like gMLP and

AS-MLP. Table 2 reports their performance comparison regarding

parameters, computations (FLOPs) and top-1 accuracies.

Amongst tiny models, our PosMLP-T achieves the 82.1% top-

1 accuracy, which is better than the results of CNN-based and

Transformer-based, i.e., ResNetY-4G, Nest-T, and Swin-T. Bene�t-

ing from the hierarchical structure and replacing the vanilla Token

FC layer with RPE based token-mixing layer, PosMLP-T requires

fewer parameters and performed well on the tiny version. While un-

der the small and base settings, our PosMLP still exhibits its strong

competitiveness. Considering the model complexity, our PosMLP-S

is more e�cient than Swin-S (parameters: 37M vs 50M; FLOPs:

8.7G vs 8.7G). Compared to its mostly related gMLP, PosMLP vari-

ants consistently outperform the gMLP counterparts. For example,

PosMLP-B outperforms gMLP-B by a margin of 2.0%, which in a

sense demonstrates the e�ectiveness of our implements in MLPs.

5.3 Ablation Study

In this section, we separately study the impacts of the model com-

ponents, PoSGU variants, feature group number B and window size.

All the ablation study experiments are based on the tiny version of

PosMLP and conducted on the ImageNet1K0.5.

Model components The key components in PosMLP can be

generalized in twos: the convolution-linked hierarchical structure

Table 3: Comparison with di�erent model components.

Model #Param. Flops
Top-1

acc.

Top-5

acc.

gMLP (original) 19.4M 4.42G 72.18 90.52

gMLP+GGQPE 18.2M 4.45G 74.02 92.00

gMLP+ConvLHS 21.8M 5.10G 76.33 93.07

gMLP+ConvLHS+GGQPE 20.9M 5.21G 77.40 93.58

PoSGU (a) (b) (c) (d) (e)

Top-1 acc. 77.40∗ 76.97 76.98 76.95 75.49

Figure 3: PoSGU variants. (a) Standard; (b) Element-wise Ad-

dition; (c) Concat; (d) LayerNorm; (e) NonSplit. ‘*’ denotes

our defalut settings for PosMLP

(ConvLHS) and the PoSGU components. ConvLHS composes the

window-based architecture and convolutional operations (ConvPE

+ ConvPM) to realize e�cient parameter sharing and local informa-

tionmodeling. As shown in Table 3, we �rst perform the comparison

between the original gMLP and the gMLP with the proposed Con-

vLHS. It can be found that gMLP+ConvLHS signi�cantly improves

gMLP by a large margin of 76.33 − 72.18 = 4.15. Secondly, we

directly replace the Token FC layers of gMLP with the proposed

group-wise PosToken FC and observe 1.84 percentage points of

performance improvement with fewer parameters and negligible

extra FLOPs (we assign B = 8 for all layers), which echoes our state-

ment that Token FC can be replaced with positional encoding for

more e�cient token mixing. Finally, the combination of GGQPE

and ConvLHS results in the highest performance of 77.40.

PoSGU con�gurations The proposed PoSGU works in a gating

manner as gMLP that splits the token embedding tensor into two

parts. We study several potential con�gurations of PoSGU to verify

the rationality of the design. Figure 8 illustrates the studied PoSGU

con�gurations, including Element-wise Addition, Concat, Layer-

Norm and NonSplit variants, as well as their corresponding classi�-

cation performances. Firstly, when replacing the gating operation

with element-wise addition (sub�gure-(b)) and channel concatena-

tion (sub�gure-(c)), we observe that performances degrade. This

indicate the e�ectiveness of the gating operation. Secondly, when

additionally adding a LayerNorm before the GGQPE (sub�gure-(d)),

there is also a performance degradation (77.40→76.95). The poten-

tial reason could be that the Softmax used by GGQPE (see Eq. (13))

contribute to normalized token-mixed information, and extra Lay-

erNorm will break the feature homogeneity for two splits. Finally,

we empirically omit the channel splitting operation (sub�gure-(e))

and �nd the same trend observed by gMLP that channel splitting is

more e�ective (75.49 vs. 77.40).
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Table 4: Comparison with di�erent group numbers B.

B each stage Top-1 acc. Top-5 acc.

(1, 1, 1, 1) 76.70 93.02

(4, 4, 4, 4) 76.87 93.40

(4, 8, 16, 32) 77.10 93.24

(32, 32, 32, 32) 77.02 93.14

(8, 16, 32, 64)∗ 77.40∗ 93.58∗

Group number B. We compare di�erent settings of group num-

ber B , which is introduced for group operation in the proposed Pos-

Token FC module (Here we inplemented on GGQPE design), in Ta-

ble 4. We observe that using group operation (76.70→76.87→77.02)

and hierarchically increasing it (76.87→77.10→77.40) in each stage

can signi�cantly improve the performance. By jointly considering

the channel dimensions in di�erent stages and the performance, we

�nally set B = 8 × (C064�� for each stage, leading to (8, 16, 32, 64)
for stages 1/2/3/4.

Table 5: Comparison using di�erent window sizes (:, :).
Win size ( 1Cℎ stage) #param. FLOPs Top-1 acc. Top-5 acc.

28 × 28 20.8M 5.95G 77.81 93.91

14 × 14∗ 20.8M 5.21G 77.40∗ 93.58∗

7 × 7 20.8M 5.01G 76.98 93.45

window size. The window size decides the number of tokens #

in a PosMLP block. We compare three settings in the �rst stage, i.e.,

7 × 7, 14 × 14 and 28 × 28. From Table 5, it can be found that larger

window size leads to monotonic performance increasing and also

dramatically raises the FLOPs. To consider the trade-o� between

performance and e�ciency, we set the patch window size as 14×14

for all model variants.

Table 6: Ablation study of changing the property of covari-

ance matrices Σ̃ and whether freeze Ā or not.

Σ form UI ÿ ÿÿ
¦

ÿÿ
¦

∆ freezed ✓ ✓ ✓ �

Top-1 acc. 76.49 77.61 77.40∗ 77.20

Σ and ∆ terms in GGQPE. Recall that the positional weight

Wgqpe in Eq. (13) is determined by two terms: covariance matrix Σ

and shift attention center ∆. Firstly, we investigate three di�erent

implementations for the covariance matrix Σ, i.e., Σ = UI where

I denotes the identity matrix, Σ = Γ and the standard Σ = ΓΓ¦.
Speci�cally,Σ = UI, which is known as Quadratic Encoding [8], only

forms isotropic Gaussian distributions. By contrast, both Σ = Γ and

Σ = ΓΓ¦ can learn non-isotropic Gaussian distributions over tokens.

The positive semi-de�nite matrix ΓΓ¦ makes the attention weights

maximized at the learned shift attention center∆, while underΣ = Γ

this will not be guaranteed any more. Among the three settings, as

shown in Table 6, Σ = Γ and Σ = ΓΓ¦ can signi�cantly outperform

Σ = UI, which demonstrates the superior of non-isotropic Gaussian

distribution in attention learning. The three attention maps also

visually give cues that Σ = Γ and Σ = ΓΓ¦ successfully learn �exible

local&non-local patterns, whereas the Σ = UI only learn a relative

local information, as shown in Figure 4. For the deep layers in

Σ = ΓΓ¦ same groups learn a global average pool attention map,

potently supporting our original intention of preserving the non-

localilty of MLPs. Secondly, since a learnable ∆ can lead to �oating

shift attention center, we thus ablate on what if freezing ∆ = (0, 0)
which meats the shifted attention center is �xed to the anchor pixel

itself. As shown in the table, the limited displacement �exibility

causes a certain degree of but not fatal degradation.

Table 7: Ablation study on the relationship between bias term

in Eq.(15) and absolute positional encoding (APE).

Bias Ę � � ✓ ✓

APE � ✓ � ✓

Top-1 acc. 76.8 77.3 77.4∗ 77.3

5.4 Bias May Reveal the Absolute Positional
Information

The proposed GGQPE explicitly learns the relative positional rela-

tion between a pair of tokens/pixels. Here we rewrite Eq. (12) with

the presence of the bias term 1 ∈ R#×1. The bias 1 is an feature

agnostic term and can assign an o�set value to each pixel/token at

the
√
# ×

√
# feature map.

Zgqpe
ĩ
= (WgqpeĩX1

B + Ę) » X2
B . (15)

So far, we still have the question that whether GGQPE can cap-

ture absolute positional information of pixels and how important

the absolute position is to PosMLP. To answer it, we purposefully

add the absolute position embedding to the tokens following ViT

[14], that is, element-wisely adding a learnable parameter to each

element of the token embedding before the �rst stage, resulting in a√
# ×

√
# ×� learnable matrix. Meanwhile, we also remove the bias

term Ę in Eq. (15) so that the GGQPE focuses entirely on the relative

positional encoding. Table 8 shows the performance changes of

PosMLP w/ and w/o Ę and absolute position encoding (APE). It can

be found that (1) PosMLP w/o Ę underperforms PosMLP w/ APE by

0.5 percent (76.8 vs 77.3), (2) PosMLPw/ Ę and PosMLPw/ APE have

almost the same results (77.4 and 77.3), and (3) PosMLP w/ both

Ę and APE does not obtain any performance gain. Based on these

observations, we speculate that (1) the absolute position encoding

is indeed essential for our PosMLP when modeling images and (2)

the bias term Ę in GGQPE can achieve similar function with APE

which explains why our PosMLP does not need any extra absolute

positions. As shown in Figure 5, we plot the logits intensity of bias

Ę of SGU and PoSGU, respectively. We observe that the center area

of an image generally has high bias values in the most stages of

PoSGU, which is reasonable as the most of the informative objects

locate at the center area in the ImageNet dataset.

5.5 Object Detection

Dataset and setting. We further examine our model on object de-

tection using COCO2017 dataset [34]. COCO2017 has 118k training

images and 5k validation images. The implementation is based on

the mmdetection [4] package, where two classic object detection

frameworks, i.e. RetinaNet [33] and Mask R-CNN [19], are used.

Here, the training and validation settings follow the basic proto-

col of Mask R-CNN and RetinaNet: 1× training scheduler (i.e., 12

epochs), batch-size 2 per GPU, resizing an image to the shorter side

800 and the longer side at most 1333, AdamW [37] optimizer with

the initial learning rate of 1 × 10−4 and weight decay of 0.067.

Implementation. We adopts windows shifting operation in

PosMLP-T following Swin Transformer [36] since for the large
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Table 8: Performance comparison with state-of-the-arts on object detection using COCO2017 dataset.

Backbone #Param.
Mask R-CNN 1×

#Param.
RetinaNet 1×

AP AP50 AP75 APm APm50 APm75 AP AP50 AP75 AP( AP" AP!
ResNet50[20] 44.2M 38.0 58.6 41.4 34.4 55.1 36.7 37.7M 36.3 55.3 38.6 19.3 40.0 48.8

PVT-Small[49] 44.1M 40.4 62.9 43.8 37.8 60.1 40.3 34.2M 40.4 61.3 43.0 25.0 42.9 55.7

CycleMLP-B2[5] 46.5M 41.7 63.6 45.8 38.2 60.4 41.0 36.5M 40.9 61.8 43.4 23.4 44.7 53.4

PosMLP-T(ours) 40.5M 41.6 64.1 45.6 38.4 61.1 41.0 31.1M 41.9 63.2 44.7 25.1 45.7 55.6

ResNet101[20] 63.2M 40.4 61.1 44.2 36.4 57.7 38.8 56.7M 38.5 57.8 41.2 21.4 42.6 51.1

PVT-Medium[49] 63.9M 42.0 64.4 45.6 39.0 61.6 42.1 53.9M 41.9 63.1 44.3 25.0 44.9 57.6

CycleMLP-B3[5] 58.0M 43.4 65.0 47.7 39.5 62.0 42.4 48.1M 42.5 63.2 45.3 25.2 45.5 56.2

PosMLP-S(ours) 56.1M 43.2 65.5 47.4 39.4 62.5 42.1 47.3M 42.4 63.6 45.1 26.5 45.7 56.3

(a) Σ = ΓΓ¦ (b) Σ = UI (c) Σ = Γ

Figure 4: Visualization of attention logits for a given query

token with di�erent form of covariance matrix Σ. Row rep-

resents di�erent layers and column represents the selected

groups in GGQPE. Results is based on PosMLP-T

(a) gMLP/SGU (b) PosMLP/PoSGU

Figure 5: Visualization of logits map of
√
# ×

√
# bias map.

(a) comes from �rst 18 Token FC layers (blocks) pretrained

from gMLP-S and (b) uses the 18 layers of 3Cℎ stages in our

pretrained PosMLP-T.

resolution dataset the non-overlap window partition will cause per-

formance degeneration. Generally, the windows shifting operation

can smooth partitioning traces and enhance windows interactions

demonstrated by Swin Transformer.

Results. Table 8 shows the object detection results as well as the

performance comparison with PVT [49], ResNet [20] and CycleMLP

[5] that have similar computational complexity with our PosMLP.

All PosMLP variants achieve consistent better performances than

the standard convolutional networks. Secondly, PosMLP outper-

forms Transformer-based PVT-small on most metrics and obtain

comparable results to CycleMLP but requires less parameters (e.g.,

40.5M vs 46.5M, 31.1M vs 36.5M).

6 CONCLUSION

In this work, we have presented a new gating unit PoSGU and used it

as the key building block to develop a new vision MLP architecture

referred to as the PosMLP. It has the advantage of reduced parameter

complexity but without sacri�ced model expressive power. We

have adopted two RPE mechanisms and proposed the group-wise

extension to boost their performance, and these improve the weak

locality and single granular non-locality in the original vision MLP

design. We have conducted thorough experiments to evaluate the

proposed approach, where the PosMLP exhibits high parameter and

sample e�ciency, e.g., Table 1 and Figure 1 (f). In the current version,

we have demonstrated the merit of direct parameterization of cross-

token relations for vision MLP. However, for an even larger scale

pre-train dataset, a more �exible combination between RPE and

TokenFC should be carefully designed, i.e., the trade-o� between

inductive bias and capability. We also hope this work will inspire

further theoretical study of positional encoding in vision MLPs and

could have a mature application as in vision Transformers.
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APPENDIX

Figure 6: The demonstration of three token mixing method

mentioned in this work. (a) Token FC needs to pairwisely

compare the # tokens; (b) The LRPE builds a learnable rela-

tion dictionary; (c) The GQPE learns the relation matrix with

a constant number of parameters that is independent of # .

.1 Bias and APE in Object Detection

We are curious the e�ect of bias term and additional absolute po-

sitional encoding (APE) in the Object Detection task (under the

Mash-RCNN 1x setting). This result is presented in Table 9, and

it is generally consistent with the observation presented in Swim

Transformer [36], that APE is e�ective in image classi�cation while

it will not promote the performance in objection detection. Instead

in their implementation, the extra APE will slightly degrade the

performance in object detection because the APE does harm to

the translation invariance . According to this phenomenon, one

possible explanation is that, in comparison with the non-overlap

downsample strategy adopted in Swim, we are using a convolu-

tional downsample strategy that inherits the nature of translation

invariance and will weaken the inductive bias at the end of each

stage. Besides, APE is playing an important role in DETR [3] in

contrast to Swim and our observation, we argue the possible expla-

nation might be the use of multi-stage FPN and convolution-based

RPN rather than the end-to-end transformer-based structure in

DETR.

Table 9: Ablation study on the bias term and absolute posi-

tional encoding (APE) in objection detection.

Bias Ę � � ✓ ✓

APE � ✓ � ✓

�%1>G 41.6 41.6 41.6 41.7

�%<0B: 38.3 38.4 38.5 38.4

.2 Convolutional Downsample Module

We add the ablation study at di�erent downsampling strategy, i.e.,

Patch Embedding (PE) module and Patch Mearging (PM) moudle.

We here demonstrates the e�ectiveness of using overlapping down-

sampling (convolutionalmapping) comparingwith non-overlapping

downsampling (Linear mapping). Using non-overlap PM tends to

introduce more redundant parameters, and substitute it with single

depthwise convolution operation will sigini�cantly decrease both

the parameter and computation complexity. The overlap PE module

will slightly increase computation cost, but compared with base

model it improves the accuracy of 0.75%

Table 10: Performance comparison with di�erent downsam-

pling strategy for gMLP (with SGU).

Architecture PE PM #Param. Flops
Top-1

acc.

Original None None 19.4M 4.42G 72.18

Hierarchical

Linear Linear 23.3M 5.10G 74.68

Conv Linear 23.3M 5.27G 75.43

Linear Conv 21.8M 4.93G 75.81

Conv Conv 21.8M 5.10G 76.33∗

(a) Layer1 (b) Layer9

(c) Layer17 (d) Layer21

Figure 7: Visualization of mapping weights after training

in Eq. (10.) Within each sub�gure we visualize each compo-

nent of projection weight matrics of di�erent layers. In each

subgraph ,the upper-left is the Token FC’s; the upper-right

is the LRPE’s; The down-left is the TokenFC + LRPE’s; The

down-right shows the cut line of the row index 40 in each

three mapping matrics. The LRPE matrics generally have

more regular patterns and keep playing a dominant term in

early layers.
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Ouput size PosMLP-T PosMLP-S PosMLP-B

stage 1 � × (56 × 56)
[

sz.16 × (14 × 14)
dim96, B8, W4,

]

× 2

[

sz.16 × (14 × 14)
dim128, B8, W4,

]

× 2

[

sz.16 × (14 × 14)
dim192, B8, W4,

]

× 2

stage 2 2� × (28 × 28)
[

sz.4 × (14 × 14)
dim192, B16, W4,

]

× 2

[

sz.4 × (14 × 14)
dim256, B16, W4,

]

× 2

[

sz.4 × (14 × 14)
dim384, B16, W4,

]

× 2

stage 3 4� × (14 × 14)
[

sz.1 × (14 × 14)
dim384, B32, W4,

]

× 18

[

sz.1 × (14 × 14)
dim512, B32, W4,

]

× 18

[

sz.1 × (14 × 14)
dim768, B32, W4,

]

× 18

stage 4 8� × (7 × 7)
[

sz.1 × (7 × 7)
dim768, B64, W2,

]

× 2

[

sz.1 × (7 × 7)
dim1024, B64, W2,

]

× 2

[

sz.1 × (7 × 7)
dim1536, B64, W2,

]

× 2

Table 11: Detailed architecture speci�cations of PosMLP.

(a) gMLP/PoSGU (b) PosMLP/PoSGU

Figure 8: Degree of non-local property in each PoSGU layer.

The non-locality is measured by the designed matrix 6(Σ̃; )
where Σ is the covariance matrix. The smaller of 6(Σ̃; ) indi-
cates this layer tends to capture more non-local patterns.

.3 Non-Localilty

Since a Σ determines the logits distribution, it can reveal the non-

locality property of the model. Typically the smaller eigenvalues of

Σwill help query token attend more to other tokens. Thus we de�ne

a matrix to quantitatively visualize the non-localilty as follow:

6(Σ; ) = 1

B

B
∑

8=1

√

√

√ 2
∏

9=1

_;8, 9 . (16)

Where, _ is the eigenvalue of Σ and ; indicates the layer index. As

discussed by Cordonnier et al [8], some Σ tend to be singular or

close to 0, i.e., some _ are extremely small. We do not take those Σ

into account and visualize the results of gMLP/PoSGU and PoSMLP

(3Cℎ stage) in Figure 8. The deeper layer tends to have smaller

6(Σ; ) which indicates the stronger capability of modeling non-

locality. Though the deepest layers slightly become more local, it is

consistent with the observation in ConViT [15] that the localilty is

not monotonically decreasing.

.4 Model Complexity Analysis

In this part, we give the parameter and computational complexities

of the PosMLP block (Single window) and gMLP block. For notation

clarity, we denote: input tensor map size as (�,, ,3); token number

# = � ×, ; channel expansion ratio in PosMLP block as W ; group

number is denoted as B . As such, the parameters number of FC

layers in the PosMLP block and gMLP block can be calculated as
follows:

% (6"!%) = 3

2
W32 + (W + 1)3 + # 2 + #,

% (%>B"!%/�!'%�) = 3

2
W32 + (W + 1)3 + (4B + 1)# − 4B

√
# + 4B,

% (%>B"!%/��'%�) = 3

2
W32 + (W + 1)3 + # + 6B .

The parameters modeling token-mixing signi�cantly shrinks (i.e.,

# 2 → 6B). Their computational complexities are:

¬(6"!%) = 3

2
W32# + 1

2
W3# 2,

¬(%>B"!%/�!'%�) = 3

2
W32# + 1

2
W3# 2 + B# 2,

¬(%>B"!%/��'%�) = 3

2
W32# + 1

2
W3# 2 + 5B# 2 .

Compared with the �rst two terms, the extra term 5B# 2 is typically

small and bearable.


