213 research outputs found

    Differential regulation of gastrulation and neuroectodermal gene expression by Snail in the Drosophila embryo

    Get PDF
    The initiation of mesoderm differentiation in the Drosophila embryo requires the gene products of twist and snail. In either mutant, the ventral cell invagination during gastrulation is blocked and no mesoderm-derived tissue is formed. One of the functions of Snail is to repress neuroectodermal genes and restrict their expressions to the lateral regions. The derepression of the neuroectodermal genes into the ventral region in snail mutant is a possible cause of defects in gastrulation and in mesoderm differentiation. To investigate such possibility, we analysed a series of snail mutant alleles. We found that different neuroectodermal genes respond differently in various snail mutant background. Due to the differential response of target genes, one of the mutant alleles, V2, that has reduced Snail function showed an intermediate phenotype. In V2 embryos, neuroectodermal genes, such as single-minded and rhomboid, are derepressed while ventral invagination proceeds normally. However, the differentiation of these invaginated cells into mesodermal lineage is disrupted. The results suggest that the establishment of mesodermal cell fate requires the proper restriction of neuroectodermal genes, while the ventral cell movement is independent of the expression patterns of these genes. Together with the data showing that the expression of some ventral genes disappear in snail mutants, we propose that Snail may repress or activate another set of target genes that are required specifically for gastrulation

    Electrochemical Disinfection of Dental Implants Experimentally Contaminated with Microorganisms as a Model for Periimplantitis

    Get PDF
    Despite several methods having been described for disinfecting implants affected by periimplantitis, none of these are universally effective and may even alter surfaces and mechanical properties of implants. Boron-doped diamond (BDD) electrodes were fabricated from niobium wires and assembled as a single instrument for implant cleaning. Chemo-mechanical debridement and air abrasion were used as control methods. Different mono-species biofilms, formed by bacteria and yeasts, were allowed to develop in rich medium at 37 ◦C for three days. In addition, natural multi-species biofilms were treated. Implants were placed in silicone, polyurethane foam and bovine ribs for simulating different clinical conditions. Following treatment, the implants were rolled on blood agar plates, which were subsequently incubated at 37 ◦C and microbial growth was analyzed. Complete electrochemical disinfection of implant surfaces was achieved with a maximum treatment time of 20 min for Candida albicans, Candida dubliniensis, Enterococcus faecalis, Roseomonas mucosa, Staphylococcus epidermidis and Streptococcus sanguinis, while in case of spore-forming Bacillus pumilus and Bacillus subtilis, a number of colonies appeared after BDD electrode treatment indicating an incomplete disinfection. Independent of the species tested, complete disinfection was never achieved when conventional techniques were used. During treatment with BDD electrodes, only minor changes in temperature and pH value were observed. The instrument used here requires optimization so that higher charge quantities can be applied in shorter treatment timesITI Foundation, Switzerlan

    Heterogeneous impact of artificial intelligence on carbon emission intensity: Empirical test based on provincial panel data in China

    Get PDF
    IntroductionEnergy conservation and emission reduction, as a major policy of China for a long time, has been put on the key strategic position. Based on the panel data of 30 provinces, cities and districts in China from 2006 to 2019.MethodsThis paper uses fixed effect model and spatial Durbin model to explore the effect and mechanism of artificial intelligence (AI) on regional carbon emission intensity (CEI).ResultsThe results show that: (1) there is a significant inverted U-shaped between AI and CEI, that is, with the deepening of the development of AI, CEI first increases and then decreases. (2) There is a significant spatial correlation between the development of AI and CEI in China. (3) AI has a significant spatial spillover effect on CEI of adjacent regions, and it shows an inverted U-shaped track-from promoting to restraining.DiscussionThe conclusion provides policy implications for the formulation of AI development strategy and so on during the specific period

    Unstructured road extraction and roadside fruit recognition in grape orchards based on a synchronous detection algorithm

    Get PDF
    Accurate road extraction and recognition of roadside fruit in complex orchard environments are essential prerequisites for robotic fruit picking and walking behavioral decisions. In this study, a novel algorithm was proposed for unstructured road extraction and roadside fruit synchronous recognition, with wine grapes and nonstructural orchards as research objects. Initially, a preprocessing method tailored to field orchards was proposed to reduce the interference of adverse factors in the operating environment. The preprocessing method contained 4 parts: interception of regions of interest, bilateral filter, logarithmic space transformation and image enhancement based on the MSRCR algorithm. Subsequently, the analysis of the enhanced image enabled the optimization of the gray factor, and a road region extraction method based on dual-space fusion was proposed by color channel enhancement and gray factor optimization. Furthermore, the YOLO model suitable for grape cluster recognition in the wild environment was selected, and its parameters were optimized to enhance the recognition performance of the model for randomly distributed grapes. Finally, a fusion recognition framework was innovatively established, wherein the road extraction result was taken as input, and the optimized parameter YOLO model was utilized to identify roadside fruits, thus realizing synchronous road extraction and roadside fruit detection. Experimental results demonstrated that the proposed method based on the pretreatment could reduce the impact of interfering factors in complex orchard environments and enhance the quality of road extraction. Using the optimized YOLOv7 model, the precision, recall, mAP, and F1-score for roadside fruit cluster detection were 88.9%, 89.7%, 93.4%, and 89.3%, respectively, all of which were higher than those of the YOLOv5 model and were more suitable for roadside grape recognition. Compared to the identification results obtained by the grape detection algorithm alone, the proposed synchronous algorithm increased the number of fruit identifications by 23.84% and the detection speed by 14.33%. This research enhanced the perception ability of robots and provided a solid support for behavioral decision systems

    Mechanical response analysis of surrounding rock bearing structure of soft rock roadway based on full-length anchorage

    Get PDF
    A mechanical model of full-length anchoring bolt is established to study the stability of mechanical bearing structure of surrounding rock in high stress soft rock roadway after full-length anchoring bolt. The model considers the dilatancy characteristics of soft rock post-peak strength softening and the stress boundary conditions of full-length bolt, and the analytical formula of bolt stress is derived. Furthermore, the mechanical model of full-length anchored surrounding rock is established by equivalent the anchoring force to the form of volume force. From shallow to deep, it is divided into anchorage residual zone, anchorage plastic softening zone, non-anchorage plastic softening zone and elastic zone, and the stress expression of each zone is deduced. Combined with engineering examples, the influence of space effect, expansion coefficient, bolt length and tray reaction force on surrounding rock stress and bolt stress is analyzed. The results show that under the influence of spatial effect, the deformation and failure of roadway presents progressive development. The concept of ' anchorage control zone ' is proposed, that is, in the process of full-length bolt support, the virtual support force and anchoring force of surrounding rock are in a state of reciprocal growth and decline, thus inhibiting the transfer of surrounding rock stress to the deep and effectively reducing the plastic zone. The earlier the anchor bolt is installed, the greater the deformation of the surrounding rock acting on the rod body, and the easier it is to form a common bearing body with the surrounding rock. The axial force of the anchor bolt is proportional to the expansion coefficient. With the increase of the expansion coefficient, the growth rate of the anchoring force is significantly accelerated, which ensures the recovery effect of the anchor bolt on the radial stress of the surrounding rock. The axial force distribution and peak value of the rod body will increase with the increase of the length of the bolt and the bonding range of the surrounding rock/anchoring agent interface, and then the peak area of the tangential stress of the surrounding rock will shift to the direction of the tunnel wall. The effect of the reaction force of the full-length bolt tray is mainly reflected in improving the stress of the bolt, giving full play to the anchoring effect of the bolt and the ability to protect the surface, and having little effect on the boundary of the residual zone and the plastic zone

    Increased Formation of Follicular Antrum in Aquaporin-8-Deficient Mice Is Due to Defective Proliferation and Migration, and Not Steroidogenesis of Granulosa Cells

    Get PDF
    Aquaporin-8 (AQP8) is a water channel protein expressed exclusively in granulosa cells (GCs) in mouse ovary. Our previous studies of AQP8-deficient (AQP8-/-) mice demonstrated that AQP8 participates in folliculogenesis, including in the formation of follicles, ovulation, and atresia. However, its physiological function in formation of the antral follicle is still largely unknown. In the present study, we observed significantly increased numbers of antral follicles in AQP8-/- ovaries as well as significantly increased follicular antrum formation in in vitro 3D culture of AQP8-/- follicles. Functional detection of AQP8-/- GCs indicated that cell proliferation is impaired with FSH treatment, and wound healing and Transwell migration are also impaired with or without FSH treatment, compared with that in WT. However, the biosynthesis of estradiol and progesterone as well as the mRNA levels of key steroidogenic enzyme genes (CYP19A1 and StAR) in AQP8-/- GCs did not change, even with addition of FSH and/or testosterone. In order to estimate the influence of the impaired proliferation and migration on the density of GC mass, preantral follicles were injected with FITC-dextran, which distributes only in the intercellular space, and analyzed by confocal microscopy. The micrographs showed significantly higher transmission of fluorescence in AQP8-/- follicles, suggesting increased intercellular space of GCs. Based on this evidence, we concluded that AQP8 deficiency leads to increased formation of follicular antra in vivo and in vitro, and the mechanism may be associated with increased intercellular space of GCs, which may be caused by defective proliferation and migration of GCs. This study may offer new insight into the molecular mechanisms of the formation of follicular antrum

    Lactobacillus reuteri Reduces the Severity of Experimental Autoimmune Encephalomyelitis in Mice by Modulating Gut Microbiota

    Get PDF
    The gut microbiome plays an important role in immune function and has been implicated in multiple sclerosis (MS). However, how and if the modulation of microbiota can prevent or treat MS remain largely unknown. In this study, we showed that probiotic Lactobacillus reuteri DSM 17938 (L. reuteri) ameliorated the development of murine experimental autoimmune encephalomyelitis (EAE), a widely used animal model of MS, a model which is primarily mediated by TH17 and TH1 cells. We discovered that L. reuteri treatment reduced TH1/TH17 cells and their associated cytokines IFN-γ/IL-17 in EAE mice. We also showed that the loss of diversity of gut microbiota induced by EAE was largely restored by L. reuteri treatment. Taxonomy-based analysis of gut microbiota showed that three “beneficial” genera Bifidobacterium, Prevotella, and Lactobacillus were negatively correlated with EAE clinical severity, whereas the genera Anaeroplasma, Rikenellaceae, and Clostridium were positively correlated with disease severity. Notably, L. reuteri treatment coordinately altered the relative abundance of these EAE-associated taxa. In conclusion, probiotic L. reuteri changed gut microbiota to modulate immune responses in EAE, making it a novel candidate in future studies to modify the severity of MS

    The Genomes of Oryza sativa: A History of Duplications

    Get PDF
    We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped super-scaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000–40,000. Only 2%–3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism (SNP) rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family
    corecore