103 research outputs found

    Well-Placed Acetabular Component Oriented Outside the Safe Zone During Weight-Bearing Daily Activities

    Get PDF
    Background: A comprehensive and thorough understanding of functional acetabular component orientation is essential for optimizing the clinical outcome after total hip arthroplasty (THA). This study aimed to quantify the functional acetabular anteversion and inclination of unilateral THA patients during walking and static standing and to determine whether the functional acetabular orientation falls within the Lewinnek safe zone.Methods: Seventeen patients with unilateral THA received a CT scan and dual fluoroscopic imaging during level walking and static standing to evaluate in vivo hip kinematics. The pelvic functional coordinate system of the 3D CT-based computer model was defined by the line of gravity and anterior pelvic plane (APP) to measure functional acetabular anteversion and inclination in different postures. The Lewinnek safe zone was used to determine the acetabular malposition during functional activities.Results: The THA side demonstrated an average of 10.1° (± 9.6°, range –7.5° to 29.9°) larger functional anteversion and 16.0° (± 9.2°, range –7.2° to 29.9°) smaller inclination than native hips during level walking. Functional acetabular anteversion in the THA side during level walking and static standing was significantly larger than anatomical measurements (p < 0.05). Acetabular orientation of most well-placed THA components anatomically in the Lewinnek safe zone fell outside the safe zone during more than half of the gait cycle and static standing.Conclusion: The current study revealed that an anatomically well-placed acetabular cup does not guarantee a well-functional orientation during daily activities. The in vivo mechanical performance and loading conditions of the THA component during other weight-bearing activities should be investigated in further studies

    Energy-Efficient Opportunistic Transmission Scheduling for Sparse Sensor Networks with Mobile Relays

    Get PDF
    Wireless sensing devices have been widely used in civilian and military applications over the past decade. In some application scenarios, the sensors are sparsely deployed in the field and are costly or infeasible to have stable communication links for delivering the collected data to the destined server. A possible solution is to utilize the motion of entities that are already present in the environment to provide opportunistic relaying services for sensory data. In this paper, we design and propose a new scheduling scheme that opportunistically schedules data transmissions based on the optimal stopping theory, with a view of minimizing the energy consumption on network probes for data delivery. In fact, by exploiting the stochastic characteristics of the relay motion, we can postpone the communication up to an acceptable time deadline until the best relay is found. Simulation results validate the effectiveness of the derived optimal strategy

    Accelerated Transport through Sliding Dynamics of Rodlike Particles in Macromolecular Networks

    Full text link
    Transport of rodlike particles in macromolecular networks is critical for many important biological processes and technological applications. Here, we report that speeding-up dynamics occurs once the rod length L reaches around integral multiple of the network mesh size ax. We find that such a fast diffusion follows the sliding dynamics and demonstrate it to be anomalous yet Brownian. The good agreement between theoretical analysis and simulations corroborates that sliding dynamics is an intermediate regime between hopping and Brownian dynamics, and suggests a mechanistic interpretation based on the rod-length dependent entropic free energy barrier. These theoretical findings are captured by the experimental observations of rods in synthetic networks, and bring new insight into the physics of the transport dynamics in confined media of networks

    The Protective Effects of Ivabradine in Preventing Progression from Viral Myocarditis to Dilated Cardiomyopathy

    Get PDF
    To study the beneficial effects of ivabradine in dilated cardiomyopathy mice, which evolved from coxsackievirus B3-induced chronic viral myocarditis. Four-to-five-week-old male balb/c mice were inoculated intraperitoneally with coxsackievirus B3 (Strain Nancy) on day 1, day 14 and day 28. The day of the first virus inoculation was defined as day 1. Thirty-five days later, the surviving chronic viral myocarditis mice were divided randomly into two groups, a treatment group and an untreated group. Ivabradine was administered by gavage for 30 consecutive days in the treatment group, and the untreated group was administered normal saline. Masson’s trichrome stain was used to evaluate the fibrosis degree in myocardial tissue. The expression levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), Collagen I, Collagen III and p38-MAPK signaling pathway proteins were detected by western blot. Electrocardiogram was used to investigate the heart rate and rhythm. The thickness of the ventricular septum and left ventricular posterior wall, left ventricular end diastolic dimension, left ventricular end systolic dimension, left ventricular ejection fractions and fractional shortening were studied by echocardiography. Compared with the untreated chronic viral myocarditis mice, ivabradine significantly increased the survival rate, attenuated the myocardial lesions and fibrosis, improved the impairment of the left ventricular function, diminished the heart dimension, decreased the production of collagen I and collagen III, reduced the expression of the proinflammatory cytokines TNF-α, IL-1β, and IL-6, and lowered the production of phospho-p38MAPK. The findings indicate the therapeutic effect of ivabradine in preventing the progression from viral myocarditis to dilated cardiomyopathy in mice with chronic viral myocarditis induced by coxsackievirus B3, is associated with inhibition of the p38MAPK pathway, downregulated inflammatory responses and decreased collagen expression. Ivabradine appears a promising approach for the treatment of patients with viral myocarditis

    Assessing the alignment accuracy of state-of-the-art deterministic fabrication methods for single quantum dot devices

    Full text link
    The realization of efficient quantum light sources relies on the integration of self-assembled quantum dots (QDs) into photonic nanostructures with high spatial positioning accuracy. In this work, we present a comprehensive investigation of the QD position accuracy, obtained using two marker-based QD positioning techniques, photoluminescence (PL) and cathodoluminescence (CL) imaging, as well as using a marker-free in-situ electron beam lithography (in-situ EBL) technique. We employ four PL imaging configurations with three different image processing approaches and compare them with CL imaging. We fabricate circular mesa structures based on the obtained QD coordinates from both PL and CL image processing to evaluate the final positioning accuracy. This yields final position offset of the QD relative to the mesa center of μx\mu_x = (-40±\pm58) nm and μy\mu_y = (-39±\pm85) nm with PL imaging and μx\mu_x = (-39±\pm30) nm and μy\mu_y = (25±\pm77) nm with CL imaging, which are comparable to the offset μx\mu_x = (20±\pm40) nm and μy\mu_y = (-14±\pm39) nm obtained using the in-situ EBL method. We discuss the possible causes of the observed offsets, which are significantly larger than the QD localization uncertainty obtained from simply imaging the QD light emission from an unstructured wafer. Our study highlights the influences of the image processing technique and the subsequent fabrication process on the final positioning accuracy for a QD placed inside a photonic nanostructure
    • …
    corecore