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Wireless sensing devices have been widely used in civilian and military applications over the past decade. In some application
scenarios, the sensors are sparsely deployed in the field and are costly or infeasible to have stable communication links for delivering
the collected data to the destined server. A possible solution is to utilize the motion of entities that are already present in the
environment to provide opportunistic relaying services for sensory data. In this paper, we design and propose a new scheduling
scheme that opportunistically schedules data transmissions based on the optimal stopping theory, with a view of minimizing the
energy consumption on network probes for data delivery. In fact, by exploiting the stochastic characteristics of the relay motion,
we can postpone the communication up to an acceptable time deadline until the best relay is found. Simulation results validate the
effectiveness of the derived optimal strategy.

1. Introduction

In the past decade, wireless sensing technology has attracted
much attention from researchers and engineers. The tradi-
tional communication model from the sensor nodes to the
data server is either single-hop or multihop. More recently,
some new application scenarios have emerged where real-
time and fine-grained sensing is not required [1]. One typical
example is animal habitat monitoring, where the goal is to
monitor and track the habitats of wild animals in a large
nature conservation area [2, 3]. Another example is the aster-
oid belt exploration, where the goal is to explore numerous
asteroids in the asteroid belt region by picoclass satellite
swarms [4]. The aforementioned applications share several
unique characteristics. First, it is costly or infeasible to have
stable communication links for data delivery. On the one
hand, the whole space is very large while the sensor nodes
are too sparsely deployed to form a fully connected network.
On the other hand, it is very difficult for a sensing device to
communicate with the data server directly due to resource
constraints on radio communication and energy supply.

Second, the information gathering should be performed
without any complex design. For example, it is difficult or
even impossible to let the sensing device move to a specific
location to facilitate information delivery. Third, the delay of
data delivery is usually tolerable by the applications that aim
at information gathering from a long-term perspective. As a
result, it is an interesting challenge to design an effective and
efficient data delivery scheme for these applications.

The key tomaking this feasible is the ubiquitous existence
of mobile relays in many of the target application scenarios.
Mobile relays are assumed to be capable of short-range
wireless communication and can exchange data with a nearby
sensing device or an access point (through which to access
the data server) they encounter as a result of their motion
[5]. In the case of animal habitat monitoring application, this
role can be served by tourists with mobile devices like tablets
or smartphones [6]. In the case of asteroid belt exploration,
the spacecrafts roving in the space can act as messengers
to perform this role [7]. Although this solution has already
been used in traditional sensor networks, most of previous
researches focus on how to control the motion behaviour of
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the relay to reduce sensor nodes’ energy consumption [8, 9] or
communication delay [10, 11].These works cannot be directly
used in our target applications, where the sensor nodes are
mobile [6] or the motion control is costly [7].

In this paper, we propose an opportunistic transmission
scheduling scheme for sparse sensor networks with mobile
relays, by means of the optimal stopping approach [12, 13].
In the proposed system, mobile relays that pass by the
sensor nodes are capable of carrying and storing the collected
data. When mobile relays move into the coverage of access
points which are connected to the data server and deployed
in or around the monitored region, they can forward the
stored data to the access points. This solution has obvious
advantages. It does not require performing mobility control
operations to mobile relays. In addition, according to the
mobile and distributed feature of relays, sensory data can be
gathered from a very large and highly distributed scenario.
Particularly, by exploiting the stochastic characteristics of the
relay motion, we can minimize the energy consumption on
network probes for data delivery with the derived optimal
rule.Theproposed scheme is comparedwith various heuristic
ones to demonstrate its efficacy and efficiency.

The rest of this paper is organized as follows. Section 2
describes the system model. The data delivery scheme based
on the optimal stopping theory is proposed and discussed
in Section 3. Section 4 evaluated the performance of the
proposed solution. Section 5 concludes this paper.

2. System Model

We consider a very large region where a number of sensor
nodes are sparsely deployed to collect data about objects
of interest. Depending on the application requirements, the
sensor node can work independently, or a small cluster of
sensor nodes can work collaboratively like a “virtual” sensor
node [4]. The data report is generated for a period of Δ𝑡𝑔.
There are also some access points deployed in or around the
monitored region and connected to the data server through
the Internet.Themobile relays move freely in the region, and
theywill occasionally pass by a sensor node or an access point.
Their arrivals follow a Poisson process with the parameter 𝜆1.
Let 𝑇𝑠𝑚 denote the time duration from the instant when a
data report is generated to the instant when this data report
is picked up by the chosen mobile reply, and 𝑇𝑚𝑎 denote
the time duration it takes the mobile replay to meet the first
access point after it carries the data report. It is assumed that
the intercontact interval 𝑇𝑚𝑎 follows an exponential distribu-
tion with the parameter 𝜆2. This assumption is reasonable,
since previous researches have proven that the exponential
distribution can be treated as the approximate distribution of
real opportunistic networks for simplicity [11, 14]. If a mobile
relay arrives at a sensor node 𝑖, node 𝑖 will decide whether
to choose this mobile relay to deliver the stored data. The
data is only forwarded to one mobile relay to guarantee an
optimal network throughput [15], and a mobile relay only
helps one sensor node for data forwarding so as to reduce
its resource consumption [1]. Once the mobile relay contacts
with a nearby access point, it forwards the data that it carries
to the access point and then to the data server eventually.

During the whole process, the sensor node and the mobile
relay have to do network probe actively and periodically for
discovering the available next-hop forwarder and sending
out the data as soon as possible. The corresponding energy
consumption on network probes in unit time can be denoted
as 𝛼 and 𝛽, respectively. Then, the total probe energy is equal
to 𝛼𝑇𝑠𝑚 + 𝛽𝑇𝑚𝑎. On the other hand, it is assumed that the
energy for data transmission is the same for a given sender
(i.e., sensor node or mobile relay). Besides, the transmission
energymay bemuch smaller than the probe energy due to the
small data size or the long probe duration [16–18]. Therefore,
for a sensor node 𝑠, it is important to decide how to choose the
most suitable mobile relay 𝑚 from those passing by, so as to
minimize the total energy consumption on network probes.
This is the problem we want to solve in this paper.

3. Data Transmission as an Optimal
Stopping Problem

3.1. Optimal StoppingTheory. This paper studies the problem
of finding the optimal time for a sensor node to choose a
passing-by mobile relay for data forwarding to minimize the
energy consumption on network probes, considering that
the relay arrivals reflect the stochastic characteristics of the
communication opportunities. Note that a lot of similar prob-
lems in many scientific areas, especially in communications,
comprise the problem of choosing the best time to take a
given action to maximize/minimize an expected payoff/cost
[12]. The optimal stopping theory is proposed to solve such
problems which chooses the optimal time to make a decision
based on sequentially observed random variables [13].

Specifically, stopping rule is defined by two objects: (1)
a sequence of random variables, 𝑋1, 𝑋2, . . ., whose joint
distribution is assumed to be known, and (2) a sequence
of real-valued reward functions, 𝑦0, 𝑦1(𝑥1), 𝑦2(𝑥1, 𝑥2), . . .,
𝑦∞(𝑥1, 𝑥2, . . .). Given these two objects, the associated stop-
ping rule problem can be described as follows. The decision
maker observes the sequence of random variables 𝑋1 = 𝑥1,
𝑋2 = 𝑥2, . . . , 𝑋𝑛 = 𝑥𝑛. At each step 𝑛, it can choose to
either stop and receive the known reward 𝑦𝑛(𝑥1, . . . , 𝑥𝑛) or
continue and observe 𝑋𝑛+1 for another decision. The goal is
to choose a time 0 ≤ 𝑁 ≤ ∞ to stop such that the expected
reward E[𝑌𝑁 = 𝑦𝑁(𝑥1, . . . , 𝑥𝑁)] is maximized, where E[⋅]

corresponds to the expected value function. The observation
of random variables can be infinite or finite. If there is a
known upper bound on the number of stages𝑁 at which one
has to stop, the problem is called a finite-horizon problem
with a horizon 𝑁. A well-known problem of this type is the
“secretary problem” [19]. Such problems can be solved by
the method of backward induction from stage𝑁 back to the
initial stage 0 [13, 20]. By now, it has already been used to
solve problems on channel exploration in cognitive radios
[21], delay minimization in vehicle networks [20], energy
saving inWLAN systems [22], and throughput improvement
in cooperative networks [23]. The major difference between
the proposed scheme and the aforementioned studies is that
our scheme exploits the passing-by mobile relays to find the
energy-optimal instant to forward the sensory data based on
the optimal stopping theory.
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3.2. Energy Oriented Optimal Forwarding. We assume an
acceptable time deadline 𝐷max for data forwarding from a
sensor node, until which we can postpone the communica-
tion. We divide 𝐷max into small time intervals with equal
lengthΔ𝑡, and thus the number of intervals is𝑁 = ⌊𝐷max/Δ𝑡⌋.
Therefore, if the data is forwarded from the sensor in the 𝑛th
interval (𝑛 ∈ [0,𝑁]), then 𝑇𝑠𝑚 ≈ 𝑛Δ𝑡 [20]. In terms of the
optimal stopping theory, our problem is to find the stopping
time 𝑛 that minimizes the energy consumption on network
probes; that is, 𝐸𝑛(𝑇𝑚𝑎) = 𝛼𝑛Δ𝑡 + 𝛽𝑇𝑚𝑎. If the time reaches
𝐷max and the sensor node has not yet forwarded the data, it
transmits at 𝑡 = 𝐷max anyway.

The above objective belongs to the optimal stopping
problem with finite horizon, as the sensor node has to stop
at no later than stage 𝑁. In principle, such problem can be
solved by the method of backward induction [13]. Since the
sensor node must stop at stage 𝑁, we first find the optimal
rule at stage 𝑁 − 1. Then, knowing the optimal rule at stage
𝑁−1, we find the optimal rule at stage𝑁−2 and so on back to
the first stage. Let 𝐸𝑛 denote the minimum expected energy
to forward data starting from stage 𝑛; we have

𝐸𝑛 = min {𝐸𝑛 (𝑇𝑚𝑎) ,E (𝐸𝑛+1)}

= min {𝛼𝑛Δ𝑡 + 𝛽𝑇𝑚𝑎,E (𝐸𝑛+1)} .
(1)

We know that, at the last stage 𝑁, E(𝐸𝑁) = E(𝛼𝑁Δ𝑡 +

𝛽𝑇𝑚𝑎) = 𝛼𝐷max + 𝛽/𝜆2. Thus, inductively, we have

E (𝐸𝑛) = E (min {𝐸𝑛 (𝑇𝑚𝑎) ,E (𝐸𝑛+1)})

= E (min {𝛼𝑛Δ𝑡 + 𝛽𝑇𝑚𝑎,E (𝐸𝑛+1)})

= ∫
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Thus, we can obtain the optimal rule at each stage 𝑛; that
is, the sensor node is to stop waiting and forward data in the
first time interval 𝑘 ∈ [1,𝑁] in which 𝛼𝑘Δ𝑡+𝛽𝑇𝑚𝑎 ≤ E(𝐸𝑘+1)

and to continue otherwise.

3.3. Expected Network Probe Energy. Now, we theoreti-
cally analyse the expected energy performance that can be
achieved by the new proposed scheme.

Let ENPE denote the expected network probe energy,
which can be represented as follows:

ENPE = (1 − 𝑃NO,1)ENPE,1

+

𝑁

∑

𝑖=2

(

𝑖−1

∏

𝑙=1

𝑃NO,𝑙)(1 − 𝑃NO,𝑖)ENPE,𝑖,
(4)

where 𝑃NO,𝑙 denotes the probability that there is no relay
chosen to carry data in the 𝑙th time interval and ENPE,𝑖
denotes the expected network probe energy that is carried
by a mobile relay in the 𝑖th time interval. Since mobile relays
arrive according to a Poisson process, we can calculate 𝑃NO,𝑙
as follows:

𝑃NO,𝑙 =
∞

∑

𝑗=0

𝑃𝑛 (𝑗) (𝑃NO𝑚,𝑙)
𝑗
. (5)

𝑃𝑛(𝑗)denotes the probability that 𝑗mobile relays arrivewithin
Δ𝑡 and 𝑃NO𝑚,𝑙 represents the probability that a mobile relay
arrives within the 𝑙th interval but is not qualified to carry the
sensory data due to 𝛼𝑙Δ𝑡 + 𝛽𝑇𝑚𝑎 > E(𝐸𝑙+1). Since the relay
arrival follows a Poisson distribution, then it is easy to know
that
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Besides,
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According to the stopping rule, we can obtain the value of
ENPE,𝑖 as follows:
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(8)

Finally, we can obtain the expected network probe energy
by (4)–(8).
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Figure 1: Network probe energy consumption with regard to 𝛽.

4. Performance Evaluation

In this section, we evaluate the performance of the proposed
models and solution. Specifically, we present the simulation
model, the valuation metrics, the numerical results of the
proposed scheme for different scenarios, and the simulation
benchmarking results by comparing the proposed scheme
with some heuristics. In our Matlab-based simulation, the
sensor nodes are sparsely and randomly deployed in a large
area and generate data every Δ𝑡𝑔 = 5 minutes. Besides, we
set Δ𝑡 = 0.5minutes. To make the results more pronounced,
for each specific scenario, the experiment is carried out
independently for 500 rounds. Note that we do not give
a specific energy unit here because different sensor nodes
have distinct energy models [7, 8] but simply use “unit”
instead.

In the first set of simulations, we fix 𝜆1 = 4, 𝜆2 = 1/15,
and 𝛼 = 0.2 and then run simulation experiments with
different 𝛽 values. In Figure 1, the impact of the relationship
between probe power parameters, that is, 𝛼 and 𝛽, is shown.
We can notice that, with the increase of 𝛽, the total energy
consumption on network probes increases. Besides, the result
fluctuations will become larger when the ratio 𝛽/𝛼 grows.

In the second set of simulations, we fix 𝛼 = 0.2, 𝛽 =

1, and 𝜆2 = 1/15 and then run simulation experiments
with different 𝜆1 values. In Figure 2, the impact of the
arrival rate of mobile relay, that is, 𝜆1, is shown. With the
increase of 𝜆1, there will be more mobile relays passing by
the sensor node in the former intervals.This will increase the
forwarding probability in these intervals, resulting in lower
energy consumption on network probes.

In the third set of simulations, we fix 𝛼 = 0.2, 𝛽 =

1, and 𝜆1 = 4 and then run simulation experiments with
different 𝜆2 values. In Figure 3, the impact of the mean time
in which a mobile relay meets an access point, that is, 1/𝜆2,
is shown. A larger value of 𝜆2 implies that the value of 𝑇𝑚𝑎 is
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smaller, resulting in lower energy consumption on network
probes.

In the fourth set of simulations, we fix 𝛼 = 0.2, 𝜆1 =
4, and 𝜆2 = 1/15 and then run simulation experiments
with different 𝐷max values. In Figure 4, we can notice that
𝐷max has little impact on the energy consumption with the
same settings of 𝛼 and 𝛽. The results indicate the perfor-
mance stability of the proposed scheme. However, if the
value of 𝐷max and 𝑁 is very small (e.g., 𝐷max = 5 and 𝑁 =

10), it may be difficult to find the most optimal forwarder
in some cases, leading to some additional energy cost.

We then compare the proposed schemewith three heuris-
tic schemes. These heuristic schemes are based on either
simple statistics (representing some long-term statistical
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methods) or simple solutions from other optimal stopping
problems [20]:

(1) Deterministic forwarding scheme (DFS): this is a sim-
ple method that schedules the forwarding at constant
equidistant time instants,𝐷max.This heuristic, despite
its simplicity, is necessary for comparison.

(2) Random forwarding scheme (RFS): the RFS method
does not prompt the sensor node to transmit at
specific time instants but at a random time within the
time length [0, 𝐷max].

(3) Average-energy forwarding scheme (AFS): the AFS
method is based on the average observed energy
computed from the beginning to the current interval.
The decision on whether to forward or postpone is
based on the comparison of the current energy value
with the energy average of the previous intervals.
If the former is smaller than the latter, then the
data is forwarded immediately. Otherwise, the data
forwarding will be postponed.

We carried out a series of simulations for comparison,
using the same parameter settings as those in the first three
set of experiments, respectively (except that in Figure 8 we
set 𝛼 = 0.2 and 𝛽 = 1). From the results shown in Figures
5–8, it is obvious that the proposed scheme outperforms
the others in terms of energy efficiency, especially when the
value of parameters (i.e., 𝛽, 𝜆1, and 𝜆2) is relatively large.
Besides, the result fluctuations of the proposed scheme is the
smallest among the four schemes.The RFS and DFS schemes
do not take any energy factor into consideration, so they
have the worst performance. The AFS scheme only considers
the energy consumption in the past intervals and thus may
stop prematurely at a local minimum and cannot make the
optimal decision.
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5. Conclusion

One of the key concerns in wireless sensor networks is
the design of energy-efficient transmission policies. This
paper presented a new scheduling scheme that minimizes
the energy consumption on network probes in sparse sensor
networks, where it is difficult to set up stable communication
links for gathering sensory data. Based on the optimal
stopping theory, which is about how to find the optimal time
instant to make an optimal decision, we exploited mobile
relays to design an opportunistic transmission scheduling
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under different schemes.

scheme. More specifically, the sensor node postpones for-
warding data until it finds the most suitable passing-by relay,
which would minimize the energy on network probes for
data delivery under specific time deadline constraints. The
simulation results have shown that the energy performance of
our scheme is quite promising and energy saving is significant
as compared to various heuristic schemes. In the future, we
plan to conduct an experimental campaign in real test-beds
to validate our scheme.
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