313 research outputs found
Research on vibration and interface simulation technology of aero-engine
Excessive vibration can cause engine fault, so the engine vibration monitoring and control is particularly important to flight safety. With the simulation platform of hardware in loop of the engine control system, the ability to handle the vibration of the engine controller can be verified. It can effectively reduce the development cost and shorten the development cycle. This paper is a result of extensive research on the vibration signal modeling and the interface simulation technology of engine, in the vibration control experiment of hardware in loop; and a universal interface simulator has been designed. The interface simulator can receive multi-channeled signal in a wide-range of values, and can also simulate different kinds of signals, simplify the signal acquisition and conditioning circuit of the electronic controller. This simulation provides a good platform for the research of engine vibration control
The Role of IS Capabilities in the Development of Multi-Sided Platforms: The Digital Ecosystem Strategy of Alibaba.com
Multi-sided platforms (MSP) are revolutionizing the global competitive landscape in the new networked economy. Yet, although these MSPs are underpinned by information systems (IS), there is currently little research on how the IS capabilities of the platform sponsor can influence, and co-evolve with, the development of the platform over time. The lack of knowledge in this area may account for the difficulties faced by a significant number of platform sponsors in developing their MSPs effectively. Using a case study of Alibaba.com, one of the worldâs largest and most commercially successful online MSP, we inductively derive a process theory of MSP development from an IS capability perspective to address this knowledge gap. The process model reveals that the role of IS capabilities in MSP development is evolutionary in nature, and the antecedent IS capabilities, nature, and outcomes of MSP development can be dramatically different in the various stages of development
Semiparametric regression analysis for alternating recurrent event data
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142558/1/sim7563_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142558/2/sim7563.pd
Study on Colour Reaction of Vanadium(V) with 2-(2-Quinolylazo)-5-Diethylaminophenol and Its Application
A sensitive, selective and rapid method has been developed for the determination of vanadium based on the rapid reaction of vanadium(V) with 2-(2-quinolylazo)-5-diethylaminophenol (QADEAP). The QADEAP reacts with V(V) in the presence of citric acid-sodium hydroxide buffer solution (pH =3.5) and cetyl trimethylammonium bromide (CTMAB) medium to form a violet chelate of a molar ratio 1:2 (V(V) to QADEAP). The molar absorptivity of the chelate is 1.23 x 105 L mol-1 cm-1 at 590 nm in the measured solution. Beer's law is obeyed in the range of 0.01~0.6 mg mL-1. This method was applied to the determination of vanadium(v) with good results.
South African Journal of Chemistry Vol.57 2004: 15-1
Unsupervised Adaptation for High-Dimensional with Limited-Sample Data Classification Using Variational Autoencoder
High-dimensional with limited-sample size (HDLSS) datasets exhibit two critical problems: (1) Due to the insufficiently small-sample size, there is a lack of enough samples to build classification models. Classification models with a limited-sample may lead to overfitting and produce erroneous or meaningless results. (2) The 'curse of dimensionality' phenomena is often an obstacle to the use of many methods for solving the high-dimensional with limited-sample size problem and reduces classification accuracy. This study proposes an unsupervised framework for high-dimensional limited-sample size data classification using dimension reduction based on variational autoencoder (VAE). First, the deep learning method variational autoencoder is applied to project high-dimensional data onto lower-dimensional space. Then, clustering is applied to the obtained latent-space of VAE to find the data groups and classify input data. The method is validated by comparing the clustering results with actual labels using purity, rand index, and normalized mutual information. Moreover, to evaluate the proposed model strength, we analyzed 14 datasets from the Arizona State University Digital Repository. Also, an empirical comparison of dimensionality reduction techniques shown to conclude their applicability in the high-dimensional with limited-sample size data settings. Experimental results demonstrate that variational autoencoder can achieve more accuracy than traditional dimensionality reduction techniques in high-dimensional with limited-sample-size data analysis
An electro-pneumatic force tracking system using fuzzy logic based volume flow control
In this paper, a fuzzy logic based volume flow control method is proposed to precisely control the force of a pneumatic actuator in an electro-pneumatic system including four on-off valves. The volume flow feature, which is the relationship between the duty cycle of the pulse width modulation (PWM) period, pressure difference, and volume flow of an on-off valve, is based on the experimental data measured by a high-precision volume flow meter. Through experimental data analysis, the maximum and minimum duty cycles are acquired. A new volume flow control method is introduced for the pneumatic system. In this method, the raw measured data are innovatively processed by a segmented, polynomial fitting method, and a newly designed procedure for calculating the duty cycle is adopted. This procedure makes it possible to combine the original data with fuzzy logic control (FLC). Additionally, the method allows us to accurately control the minimum and maximum opening pulse width of the valve. Several experiments are performed based on the experimental data, instead of the traditional theoretical models. Only 0.141 N (1.41%) overshoot and 0.03 N (0.03%) steady-state error are observed in the step response experiment, and 0.123 N average error is found while tracking the sine wave reference
NANOG regulates epithelial-mesenchymal transition and chemoresistance in ovarian cancer
Synopsis A key transcription factor associated with poor prognosis and resistance to chemotherapy in ovarian cancer is NANOG. However, the mechanism by which NANOG functions remains undefined. It has been suggested that epithelial-to-mesenchymal transition (EMT) also contributes to development of drug resistance in different cancers. We thus determined whether NANOG expression was associated with EMT and chemoresistance in epithelial ovarian cancer cells. NANOG expression was increased in epithelial ovarian cancer cell lines compared with its expression in normal epithelial ovarian cell lines. NANOG expression in SKOV-3 or OV2008 cells directly correlated with high expression of mesenchymal cell markers and inversely with low expression of epithelial cell marker. RNAi-mediated silencing of NANOG in SKOV-3 reversed the expression of mesenchymal cell markers and restored expression of E-cadherin. Reversibly, stable overexpression of NANOG in Moody cells increased expression of Ncadherin whereas down-regulating expression of E-cadherin, cumulatively indicating that NANOG plays an important role in maintaining the mesenchymal cell markers. Modulating NANOG expression did not have any effect on proliferation or colony formation. Susceptibility to cisplatin increased in SKOV-3 cells on down-regulating NANOG and reversible results were obtained in Moody cells post-overexpression of NANOG. NANOG silencing in SKOV-3 and OV2008 robustly attenuated in vitro migration and invasion. NANOG expression exhibited a biphasic pattern in patients with ovarian cancer and expression was directly correlated to chemoresistance retrospectively. Cumulatively, our data demonstrate that NANOG expression modulates chemosensitivity and EMT resistance in ovarian cancer
Unveiling the novel immune and molecular signatures of ovarian cancer: insights and innovations from single-cell sequencing
Ovarian cancer is a highly heterogeneous and lethal malignancy with limited treatment options. Over the past decade, single-cell sequencing has emerged as an advanced biological technology capable of decoding the landscape of ovarian cancer at the single-cell resolution. It operates at the level of genes, transcriptomes, proteins, epigenomes, and metabolisms, providing detailed information that is distinct from bulk sequencing methods, which only offer average data for specific lesions. Single-cell sequencing technology provides detailed insights into the immune and molecular mechanisms underlying tumor occurrence, development, drug resistance, and immune escape. These insights can guide the development of innovative diagnostic markers, therapeutic strategies, and prognostic indicators. Overall, this review provides a comprehensive summary of the diverse applications of single-cell sequencing in ovarian cancer. It encompasses the identification and characterization of novel cell subpopulations, the elucidation of tumor heterogeneity, the investigation of the tumor microenvironment, the analysis of mechanisms underlying metastasis, and the integration of innovative approaches such as organoid models and multi-omics analysis
Small intestinal submucosa promotes angiogenesis via the Hippo pathway to improve vaginal repair
Vaginal reconstruction has incorporated the use of gastrointestinal segments for decades, but the technique is inevitably associated with complications. Tissue-engineering techniques, however, have brought great hope for vaginal reconstruction. This study aimed to evaluate the utility of small intestinal submucosa (SIS) in reconstructing clinically significant large vaginal defects in a porcine model and to investigate the role of the Hippo pathway in the vascular remodeling process. The composition and mechanical properties of SIS were characterized. Full-thickness vaginal defects were established in 10 minipig donors, with 4 cm lengths removed and replaced by an equal sized SIS scaffolds. The neovaginas were subjected to macroscopic, histological, immunohistochemical and molecular evaluations at 4 and 12 weeks after the surgery. Four weeks after the operation, extracellular matrix reorganization and complete coverage of the surface of the luminal matrix by vaginal epithelium were observed, accompanied by the formation of a microvascular network and the regeneration of smooth muscles, albeit disorderly arranged. Twelve weeks after implantation, enhancements were seen in the formation of the multi-layered squamous epithelium, angiogenesis, and large muscle bundle formation in the vagina. Additionally, the expression levels of angiogenesis-related proteins, proliferation-related proteins and Hippo pathway-related proteins in the neovagina were significantly increased. These results indicate that SIS could be used to reconstruct large vaginal defects and that the vascular remodeling process is potentially regulated by the Hippo pathway
- âŠ