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Ovarian cancer is a highly heterogeneous and lethal malignancy with limited

treatment options. Over the past decade, single-cell sequencing has emerged as

an advanced biological technology capable of decoding the landscape of ovarian

cancer at the single-cell resolution. It operates at the level of genes,

transcriptomes, proteins, epigenomes, and metabolisms, providing detailed

information that is distinct from bulk sequencing methods, which only offer

average data for specific lesions. Single-cell sequencing technology provides

detailed insights into the immune and molecular mechanisms underlying tumor

occurrence, development, drug resistance, and immune escape. These insights

can guide the development of innovative diagnostic markers, therapeutic

strategies, and prognostic indicators. Overall, this review provides a

comprehensive summary of the diverse applications of single-cell sequencing

in ovarian cancer. It encompasses the identification and characterization of novel

cell subpopulations, the elucidation of tumor heterogeneity, the investigation of

the tumor microenvironment, the analysis of mechanisms underlying metastasis,

and the integration of innovative approaches such as organoid models and

multi-omics analysis.

KEYWORDS

ovarian cancer, single-cell sequencing, tumor immunology, tumor heterogeneity,
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1 Introduction

Ovarian cancer (OC) is a highly lethal malignancy affecting the female reproductive system

with high mortality rates worldwide. It is often diagnosed during late stages, given that early

symptoms are often absent and effective screening methods are lacking (1). Despite significant

advancements in cytoreductive surgery, chemotherapy, immunotherapy, and maintenance

therapy, the 5-year survival rate for OC remains discouraging, with reported rates of 26% to
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42% (2, 3). This is mainly attributed to drug resistance, recurrence, and

metastasis, which are commonly observed in OC cases (4).

Additionally, the substantial heterogeneity and complex molecular

properties of ovary-derived carcinoma present challenges in

understanding its origins and progression. Consequently,

comprehensive exploration of crucial biomarkers and molecular

mechanisms in OC is imperative for early diagnosis, innovating

therapeutic strategies, and accurately predicting prognosis.

In recent years, bulk RNA sequencing (RNA-seq) technology

has been widely utilized to investigate the molecular characteristics

and biological processes of OC (5). However, the complexity of the

tumor microenvironment (TME) presents a formidable challenge

when using bulk RNA-seq, as it includes malignant cells and various

other functional cells. Consequently, bulk transcriptomics is

unsuitable for cell-level research on tumor tissue characterized by

high heterogeneity and complex components (6). This limitation

hinders the acquisition of a precise understanding of the underlying

biological and pathological processes. Over the past decade, single-

cell sequencing has emerged as a potent biological technology

capable of decoding the landscape of OC at the level of genes,

transcriptomes, proteins, epigenomes, and metabolisms level (7).

Specifically, Single-cell sequencing provides valuable insights into

the intra- and inter-tumor heterogeneity, enabling the analysis of

cellular variations, identification of cell classifications, and

comprehension of carcinogenesis to accelerate the development of

novel and efficient therapies (8). Single-cell sequencing technology

has been widely utilized in OC research, providing significant

insights into this complex disease. For instance, single-cell RNA

sequencing (scRNA-seq) data analysis has indicated that targeting

the JAK/STAT pathway may hold anti-tumor efficacy in OC (9).

Similarly, using scRNA-seq, researchers identified six subtypes of

fallopian tube epithelium (FTE), with one subtype being associated

with clinical prognosis (10).

In this review, we expound on the utilization of single-cell

sequencing in exploring cell types, elucidating tumor heterogeneity,

uncovering the tumor microenvironment landscape, and analyzing

the mechanism underlying OC metastasis. Furthermore, we discuss

its integration with novel methods, including organoid culture and

multi-omics analysis. The utilization of single-cell sequencing

technology provides a wealth of detailed insights into the

molecular mechanisms involved in tumor initiation, progression,

drug resistance, and immune evasion. These discoveries will

provide valuable guidance for the development of innovative

therapeutic strategies, the identification of diagnostic markers,

and the prediction of patient prognosis.
2 Epidemiological and biological
characteristics of OC

In 2020, the global incidence of OC exceeded 300,000, with

more than 200,000 reported deaths (11). Ovarian malignancies are

frequently diagnosed at advanced stages due to the lack of reliable

early detection methods, resulting in poor prognosis and ineffective

therapeutic targets (12). Furthermore, OC can be classified into over
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fifteen distinct molecular and pathological subtypes, making it

challenging to determine the optimal treatment strategies (13, 14).

Ovarian epithelial carcinomas are the predominant and deadliest

forms of OC. Ovarian carcinomas are categorized into five primary

types based on histopathology and molecular genetic alterations,

including high-grade serous (70%), endometrioid (10%), clear cell

(10%), mucinous (3%), and low-grade serous (less than 5%) (15).

Among these types, high-grade serous ovarian cancer (HGSOC)

accounts for approximately 80% of OC-related deaths (16).

Cytoreductive surgery and platinum-based chemotherapy

currently serve as the primary treatments for ovarian carcinoma.

The past few years have witnessed the advent of targeted therapies

that focus on the unique molecular characteristics of OC and play

an increasingly important role. Specifically, approximately 20% of

HGSOC cases exhibit alterations in BRCA1/2 genes, either through

mutations or methylation modifications (17). Mutations in BRCA1/

2 are widely acknowledged to be a significant contributing factor to

homologous recombination deficiency (HRD) in ovarian

carcinoma. Cells with these mutations rely on error-prone DNA

repair mechanisms, making them susceptible to DNA damaging

agents and poly (ADP-ribose) polymerase inhibitors (PARPi) (18).

Additionally, anti-angiogenic agents targeting the VEGF/VEGFR

signaling pathway in the TME have been developed for OC (19).

The emergence of this innovative targeted approach has created

opportunities for stratifying OC patients and providing

personalized treatment approaches (14). However, due to the high

intra-tumor heterogeneity, nearly 50% of OC patients without an

HR mutation exhibit platinum resistance or refractoriness, and

most treated patients will eventually experience tumor relapse and

metastasis (20, 21). Furthermore, relapsed patients often develop

drug resistance, experience severe chemotherapy side effects, and

eventually succumb to the disease (2). Therefore, the identifying

novel molecular targets and the implementing personalized therapy

are crucial for improving the survival rate of OC patients.

An increasing body of evidence frommulti-omics studies recognizes

OC as a distinct disease characterized by significant heterogeneity

resulting from various molecular and microenvironmental factors (17,

22). Nonetheless, lacking a comprehensive understanding of the TME in

OC has hindered the advancement of novel immunotherapy approaches

and classification methods. Gaining insight into gene expression and

mutations is crucial for assessing patient prognosis and evaluating the

efficacy of chemotherapy (23, 24). The key challenges in understanding

ovarian tumors lie in detecting rare cancer cell subtypes with genetic

variability and elucidating the role of stromal cells in providing functional

support, which can contribute to chemoresistance. Ameta-analysis study

analyzing a large amount of bulk sequencing data in OC failed to identify

a satisfactory predictive gene expression signature (25). Despite extensive

analyses, no practical and novel biomarkers have been identified for

prognosis and immunotherapy. Consequently, genetic and molecular

studies conducted at the bulk tissue level have not obtained significant

clinical insights. Interestingly, the emergence of single-cell sequencing

techniques has facilitated the classification of individual cells based on

their subtypes and expanded our understandings of the molecular

characteristics of ovarian tumors (26). Single-cell sequencing methods

provide a comprehensive assessment of intra-tumor heterogeneity in OC

by enabling high-resolution molecular profiling of numerous distinct
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malignant cells and stromal and immune-associated cells within the

tumor. By conducting single-cell resolution analysis of tumor tissue with

complex compositions, researchers can comprehensively depict the intra-

tumor and inter-patient heterogeneity while simultaneously capturing

the quantitative and qualitative aspects of thousands of genes at the

single-cell level.
3 Emerging single-cell
sequencing technology

The emergence of next-generation sequencing technology in

2005 marked a significant milestone in the rapid development of

biological science (27). High-throughput sequencing of genes,

transcriptomes, and non-coding RNA using next-generation

sequencing has paved the way for single-cell sequencing. Tang

et al. conducted the first single-cell transcriptomics investigation in

2009, analyzing mouse blastomeres, although it was considered

“low throughput” (28). The first DNA sequencing of malignant

tumor cells at a single-cell resolution was accomplished in 2011

(29). Over the past decade, single-cell sequencing has rapidly

developed, stemming from the advancements in next-

generation sequencing.

The past few years have witnessed unprecedented progress in

analyzing intra- and inter-tumor cellular heterogeneity and the

biological processes of tumor development at a high resolution using

single-cell sequencing, outperforming previous traditional sequencing

methods. It also enhanced researchers’ ability to investigate molecular

features in different cell types, ensuring unbiased analysis of cancer

tissue (30, 31). Furthermore, it enabled the detection of single-

nucleotide variations and copy number alterations at the molecular

level (32, 33). Single-cell analysis of multiple omics, including gene

sequencing, transcriptome analysis, protein profiling, epigenomic

characterization, and metabolic profiling, has experienced significant

advancements in recent years (34). Innovations in cell separation/

isolation techniques, sequencing technologies, and analytical

procedures have propelled the advancement of single-cell sequencing,

enhancing its accuracy and sensitivity. Consequently, this acceleration

has facilitated the advancement of effective treatments and personalized

therapies by constructing of human cell atlases and further cancer

research (35, 36). In cancer research, single-cell analysis has been

employed to identify and characterize rare cellular subtypes, cancer

stem cells (CSCs), circulating tumor cells (CTCs), TME, inter-tumor

heterogeneity, and molecular mutations (37, 38). These detailed

insights into the molecular mechanisms underlying tumor initiation,

progression, metastasis, drug resistance, recurrence, and immune

evasion, provide valuable guidance for cancer research.

scRNA-seq is a widely employed method for profiling the

transcriptomes of individual cells, making it one of the most

utilized technologies in this field. The Drop-seq-based platform

developed by 10X Genomics (39) and the CytoSeq-based platform

offered by BD Rhapsody (40) are widely utilized for scRNA-seq

experiments. Furthermore, the other key single-cell sequencing

technologies and platforms have been compiled in Table 1. The

scRNA-seq follows general protocols, which involve isolating single
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cells, extracting RNA, performing reverse transcription, conducting

detection, and finally, carrying out bioinformatic analyses

(41) (Figure 1).

Single-cell isolation is the initial and crucial step that

determines the accuracy and sensitivity of single-cell sequencing.

The primary challenge lies in the rapid and precise collection of

these individual cells. Experimental tissues are typically obtained

during cytoreductive surgery after pathological diagnosis, and

various methods are employed to isolate an adequate number of

single cells. The original protocol used Flow Activated Cell Sorting

(FACS) to isolate single cells (42). Modern techniques, such as

Drop-seq and SCI-seq, utilize microfluidics with droplets and

nanowells to achieve high-throughput single-cell separation,

thereby enhancing sequencing efficiency and ease (39, 43, 44).

Given that the preparation of single-cell suspensions requires

fresh samples, an alternative technique called single-nucleus RNA

sequencing (snRNA-seq) has emerged, replacing whole-cell

sequencing with nuclear sequencing to circumvent this stringent

requirement (45, 46).

Subsequently, the recognition of sequencing data at the single-

cell level presents another challenge. Scientists have employed

micro-reaction systems with special tags/indices, comprising

single cells, functional beads, and reverse transcriptomes, to

identify cell types and intracellular molecules. In Drop-seq, each

functional bead is labeled with four components: a constant

sequence, a cell barcode, a unique molecular identifier (UMI),

and an oligo-dT sequence from 5′ to 3′. Specifically, the cell

barcode is distinct in each bead to label single-cell, while each

single-cell has its own UMI to distinguish polymerase chain

reaction (PCR) duplicates. Simultaneously, the constant sequence

serves as a consistent priming site for future PCR and sequencing,

and the oligo-dT sequence facilitates the acquisition of mRNA (39).

Moreover, the UMI can mark other types of molecules, such as

genes and proteins, enabling multi-omics analysis (47). These

ingenious designs ensure the accurate recognition of molecular

characteristics at the single-cell level. Following the labeling of each

cell’s molecules with a barcode, in vitro transcription, PCR, and

next-generation sequencing are performed.

Finally, sequencing data analysis is crucial for the significant

findings in single-cell sequencing research (48). Multiple specialized

programs based on professional bioinformatic methods are used for

the analysis of sequencing data (49, 50). The fundamental data

analysis process consists of various steps: data acquisition, data

cleaning and normalization, gene identification and cell type

assignment, cell trajectory analysis, and cell-gene associations.

Firstly, the original nucleotide sequencing reads are initially

mapped to the transcriptome and read counts and UMIs are

utilized to calculate gene expression in individual cells.

Subsequently, the data cleaning encompasses the removal of low-

quality genetic information and cells with low quality, such as

doublets or empty droplets, and high percentages of mitochondrial

expression. Following this, data normalization is carried out to

standardize gene expression profiles across cells. Next, an essential

step is cell type identification, involving the clustering of cells based

on their expression patterns, often employing differential expression

analysis and known cell markers for validation. Subpopulation
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analysis further refines cell types, identifying distinct subgroups

within them. Then, cell trajectory analysis, which includes

pseudotime analysis, reveals the developmental paths and fates of

individual cells. Finally, the exploration of cell-gene associations

unveils gene modules and regulatory networks, providing insights
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into functional pathways (Figure 2). This multi-step process ensures

the scientific integrity and reliability of the findings.

The effective application of Single-cell sequencing relying on

robust computational tools and software packages. Various versatile

tools have emerged, each possessing unique features and
TABLE 1 Summary of single-cell sequencing technologies and platforms.

Technology Platform Year Single-cell Isolation
Method

Barcode Type Library Preparation
Method

Throughput

Transcriptomics SMART-seq2 2013 FACS Unique Molecular Identifier Full-length cDNA
amplification

Low

Drop-seq 2015 Droplet-based microfluidics Unique Molecular Identifier cDNA amplification High

inDrop 2015 Droplet-based microfluidics Unique Molecular Identifier cDNA amplification High

10x Genomics
Chromium

2015 Microfluidics, FACS Unique Molecular Identifier cDNA amplification High

CytoSeq 2015 microwells Unique Molecular Identifier cDNA amplification High

Seq-Well 2017 Microfluidics Unique Molecular Identifier cDNA amplification High

MARS-seq 2017 Microfluidics Unique Molecular Identifier cDNA amplification High

sci-RNA-seq2 2019 Microfluidics Unique Molecular Identifier cDNA amplification High

CEL-Seq2 2015 Micromanipulation, FACS Unique Molecular Identifier cDNA amplification Low

Quartz-Seq 2017 Microfluidics Unique Molecular Identifier cDNA amplification High

SPLiT-seq 2017 Micromanipulation, FACS Unique Molecular Identifier cDNA amplification High

Genomics 10x Genomics
Chromium

2015 Microfluidics, FACS Unique Molecular Identifier Genome amplification High

MARS-seq 2017 Microfluidics Unique Molecular Identifier Genome amplification High

Seq-Well 2017 Microfluidics Unique Molecular Identifier Genome amplification High

sci-RNA-seq2 2019 Microfluidics Unique Molecular Identifier Genome amplification High

CEL-Seq2 2015 Micromanipulation, FACS Unique Molecular Identifier Genome amplification Low

SPLiT-seq 2017 Micromanipulation, FACS Unique Molecular Identifier Genome amplification High

Epigenomics scATAC-seq 2015 Tn5 tagmentation Unique Molecular Identifier or
ATAC-barcode

Genome amplification/
tagmentation

High

scCHIC-seq 2017 Tn5 tagmentation Unique Molecular Identifier or
ATAC-barcode

Genome amplification/
tagmentation

High

scNMT-seq 2017 Tn5 tagmentation Unique Molecular Identifier Genome amplification High

scCOOL-seq 2019 Tn5 tagmentation Unique Molecular Identifier Genome amplification High

scTHS-seq 2020 Tn5 tagmentation Unique Molecular Identifier Genome amplification High

scMC-seq 2020 Tn5 tagmentation Unique Molecular Identifier Genome amplification High

Spatial
Transcriptomics

10x Genomics
Visium

2016 Spatial capture, in situ
sequencing

Spatial barcode cDNA amplification High

Slide-seq 2020 Spatial capture, in situ
sequencing

Spatial barcode cDNA amplification High

MERFISH 2016 Single-molecule FISH Oligonucleotide probes Imaging

seqFISH+ 2017 Single-molecule FISH Oligonucleotide probes Imaging

osmFISH 2019 Single-molecule FISH Oligonucleotide probes Imaging

STARmap 2019 Single-molecule FISH Oligonucleotide probes Imaging

FISSEQ 2019 Single-molecule FISH Oligonucleotide probes Imaging
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capabilities. Seurat represents a widely adopted R package for the

analysis of single-cell RNA-seq data (51, 52). It provides

comprehensive workflows encompassing quality control,

normalization, dimensionality reduction, clustering, and

visualization. In addition, Scanpy, a potent Python library,

distinguishes itself with exceptional scalability and speed, making

it ideal for the analysis of extensive single-cell datasets (53).

Notably, scVI has emerged as a probabilistic framework designed

for the integration of scRNA-seq data and the imputation of

missing values, a valuable asset when handling noisy or sparse

datasets (54). These tools assume pivotal roles in unraveling the

intricate landscapes of single-cell data, thereby providing invaluable

insights into cell types, developmental trajectories, and

regulatory networks.

In summary, single-cell sequencing is a breakthrough

technology compared to bulk sequencing, which offers several

significant advantages in cancer research: the ability to detect

tumor heterogeneity, the ability to discover new cancer cell

subtypes, the ability to create a precise map of the TME and

analyze immune-related pathological processes, and reveal the

molecular mechanisms underlying tumor progression (55). The

new discoveries brought about by single-cell sequencing have

greatly enhanced our understanding of various diseases and

provided novel insights into therapy and diagnosis. Several
Frontiers in Immunology 05
reviews have summarized the applications of single-cell

sequencing in various disorders, such as heart (56) and brain

disease (57). However, limited articles have reviewed the

advancements of this novel technique in cancer of ovary.

Consequently, we summarized the latest research on OC up until

March 2023. Subsequent chapters will present detailed single-cell

sequencing-based studies of OC to provide precise predictions and

guidance for the future development of this field.
4 Identification of heterogeneity and
cancer cell subtypes in OC

Heterogeneity arises from a combination of genetic and non-

genetic factors (58, 59). Cancer cells undergo a progression from

normal cells, accumulating genetic and epigenetic mutations that

lead to the development of distinct lineages and specialized

subtypes. Consequently, despite originating from the same tumor,

these cells exhibit diverse mutation types and phenotypes (60, 61).

Different cancer cell types exhibit remarkable variability in almost

every phenotype, including the potential to form metastasis and

develop resistance to chemotherapy (58). The aforementioned

reasons account for the extensive heterogeneity in cancer,

especially in OC. Intra-tumor heterogeneity plays a crucial role in
FIGURE 1

Single-cell Sequencing Workflow for Ovarian Cancer. Single-cell suspensions are isolated from fresh ovarian cancer and metastatic cancer tissues.
Barcoded Beads labeling technology is employed to obtain gene expression levels and profiles for each individual cell post-sequencing. Subsequent
analysis, including cell clustering, differential gene expression, cell developmental trajectory, and differential gene clustering, generates diverse
datasets, offering a comprehensive and updated understanding of ovarian cancer at the single-cell level.
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chemotherapy resistance and even treatment failure in OC (62).

Meanwhile, inter-tumor heterogeneity is crucial for individualized

treatment (63). It encompasses variations in molecular

characteristics of the same type of cancer across different patients,

primarily characterized by diverse gene mutations, distinct cell

populations, and varying levels of immune infiltration. Therefore,

it significantly impacts the outcomes of identical therapeutic

strategies on different patients (64, 65). To address this situation,

reliable prediction of drug targets provides the basis for

personalized cancer treatment. Previous research on target

speculation primarily focused on identifying bulk tumor tissues

consisting of a variety of immune cells, fibroblasts, endothelial cells,

and cancer cells. However, conventional sequencing approaches

applied to bulk samples face challenges as they can be complicated

by the presence of numerous other cells within the same lesion,

which obscures the phenotypes of small cell subtypes.

Consequently, traditional bulk sequencing techniques that pool

cells together exhibit limited ability to accurately depict

prognostic and therapeutic target genes. Moreover, treatment

strategies based on next-generation sequencing exhibit diverse

treatment responses, suggesting the simultaneous emergence of

different cancer cell subtypes within individual patients, as

demonstrated by single-cell analysis (66). Single-cell sequencing

provides a solution to overcome this challenge by identifying and
Frontiers in Immunology 06
characterizing cell subpopulations, thereby elucidating tumor

heterogeneity (Figure 3).

In 2011, a bulk RNA-seq-based study revealed that HGSOC

encompasses four molecular types: differentiated, proliferative,

mesenchymal, and immunoreactive (17). However, single-cell

sequencing analysis detected the coexistence of all four molecular

types within a single HGSOC sample (67). Accordingly, to obtain

the prognostic value and guide therapeutic decisions, the

identification of molecular subtypes should be performed at the

single-cell level, given that different molecular types exhibit diverse

responses to treatment (68). Over the years, several studies have

employed single-cell sequencing to investigate genetic diversity in

OC. In 2017, a pioneering study utilized scRNA-seq to explore the

genetic profiles of 66 single cells derived from an HGSOC patient

(67). The analysis revealed two major cell types: epithelial cells

characterized by the expression of proliferation-related genes, and

stromal cells marked by elevated levels of extracellular matrix

(ECM) and epithelial-mesenchymal transition (EMT) related

genes. Although this study provided preliminary insights into the

single-cell transcriptome landscape of OC, it was limited in its

ability to comprehensively analyze intratumor heterogeneity and

identify an adequate number of cancer cell populations.

Subsequently, another research group conducted high-throughput

scRNA-seq analysis on both primary and metastatic carcinoma
FIGURE 2

Applications of Single-cell Sequencing Technology in Ovarian Cancer. Single-cell sequencing technology enables the identification of specific cell
markers, facilitating the classification and characterization of diverse cell types and subtypes. Furthermore, analyzing differential gene expression
among these distinct cell populations allows for a comprehensive understanding of their functional roles. Additionally, the identification of key gene
expression signatures in different cell types helps elucidate specific cellular functions within the complex ovarian cancer microenvironment.
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lesions (69). Their findings revealed that while primary tumors

exhibited significant heterogeneity among individual patients, the

gene expressions in metastatic tumors were remarkably

homogeneous, but distinct from those in primary tumors (69).

The study identified 16 cell types, including four major subtypes of

malignant epithelial cells, as well as distinct cell populations

associated with high-grade cancer, low-grade cancer, and benign

tumors. Furthermore, the composition of cell types underwent

significant changes during the transition from primarily epithelial

cells in the primary lesions to immunologic cells in the metastatic

lesions. Notably, the key cell populations responsible for secreting

soluble factors also transformed from myeloid cells to fibroblasts,

which might have originated from the epithelial cells. These

findings highlight the potential of single-cell sequencing in

unravelling the mysteries of tumor and cellular heterogeneity,

leading to a better understanding of OC progression.

In a recent study, researchers investigated the intra-tumor

heterogeneity of OC using scRNA-seq and identified six cell

types: epithelial cells, fibroblast cells, T cells, B cells, macrophages,
Frontiers in Immunology 07
and endothelial cells (70). Notably, the subtypes of epithelial cells

exhibited novel molecular markers for HGSOC, while the subtypes

of fibroblast cells revealed heterogeneity in their biological

functions. Moreover, the analysis of the genetic regulatory

network and the interaction between epithelial and fibroblast cells

revealed the potential involvement of the JUN pathway in OC,

highlighting it as a prospective therapeutic target. The concept that

genetic heterogeneity contributes to the persistence of the majority

of cancer cells has been substantiated (71). Moreover, the diverse

phenotypic heterogeneity (non-genetic heterogeneity) arising from

a similar gene background contributes to crucial malignant

characteristics of cancer, such as metastasis and drug resistance.

Gene heterogeneity is often acquired, whereas phenotype

heterogeneity typically arises from the original cells due to

various mechanisms, including epigenetic regulation (72, 73).

Identification of the origin-cell state may become novel approach

to elucidate the phenotype heterogeneity of a cancer subtype (72,

74, 75). Therefore, single-cell sequencing has been utilized to

investigate the link between subgroups of normal FTE cells and
FIGURE 3

The Crucial Role of Single-cell Sequencing in Exploring Ovarian Cancer Heterogeneity. Heterogeneity Single-cell sequencing technology plays a vital
role in unraveling the heterogeneity of ovarian cancer. It enables precise discrimination of tumor heterogeneity among different patients and
distinguishes heterogeneity between distinct lesions within the same patient, such as primary and metastatic lesions. Importantly, given the diverse
cellular composition within tumor tissues, single-cell sequencing also identifies cellular heterogeneity within the tumor microenvironment.
Furthermore, the integration of multi-omicss data, including genomics, transcriptomics, proteomics, and epigenomics, provides a comprehensive
understanding of tumor molecular characteristics and underlying developmental mechanisms.
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HGSOC cell subgroups (10). Six subpopulations of FTE cells,

including four secretory subtypes, were identified, and a gene

characteristic that can predict a poor prognosis for highly EMT

OC was documented. Furthermore, these results revealed a strong

association between secretory FTE cells and HGSOC subtypes,

highlighting the phenotypic heterogeneity of cancer cells

originating from the original cells. This study introduced a novel

approach to accurately predict cancer biological processes by

assessing original non-malignant cells. This innovative research

has shifted the focus of investigating tumor heterogeneity by

examining the connection between cancer cells and normal FTE

cells, which are believed to be the source of ovarian cancer. Another

study using scRNA-seq identified two subclasses of cancer cells

associated with poor prognosis in HGSOC (76). Specifically, one

group consisted of primary and stem-like tumor cells, and SLC3A1

and PEG10 served as genetic indicators for tumor-initiating cells.

The other group was characterized by the presence of CA125 and a

decreased quantity of infiltrating cytotoxic T cells. Cell interaction

with these malignant cells was mediated by LGALS9 and GAS6,

inhibiting cytotoxic T cells. Moreover, these two cancer cell groups

can survive during initial therapy and induce immunosuppression.

These results suggest a novel indicator for diagnosing and treating

OC by targeting the malignant cell subclass.

Subsequently, a multi-omics study investigated the progression

timeline of HGSOC subtypes by performing an integrated analysis of

total copy number variations and gene expression using single-cell

technology (77). This study indicated that the differences in subtypes

occur during the late stage of cancer progression. Additionally,

recurrent OC was characterized as a proliferative cancer,

characterized by gene variability and lack of immune infiltration. In

contrast, well-differentiated tumors were characterized by gene stability

and high levels of immune infiltration. Moreover, significant

heterogeneity gives rise to various subclasses of HGSOC, but a non-

constant subclass exists among malignant epithelial cells. This research

highlights the need to update previous subtype analyses based on bulk

transcriptome sequencing with more stable single-cell multi-omics

analysis. Similarly, another research team employed scRNA-seq to

analyze the heterogeneity of OC, normal ovary, and embryo samples

(78). Eight distinct cell types were identified, and genetic expression

analysis revealed similarities between embryo and OC samples in

several cell types. A subgroup of malignant epithelial cells derived

from embryos was characterized by the presence of PEG10+ during the

intermediate phase of progression from embryo to cancer and was

associated with carcinogenesis and poor prognosis. Furthermore, the

presence of PEG10+ is a significant characteristic of cancer stem cells,

given that it influences their self-duplication and promotes resistance to

cisplatin through the NOTCH signaling pathway. Therefore, the novel

insights into the evolution from embryo to OC can enhance our

understanding of carcinogenesis and facilitate the discovery of new

therapeutic targets, such as PEG10+.

It is now understood that the tumor-stromal component

significantly affects the accuracy of prognostic prediction based

on molecular subclasses; however, a comprehensive understanding

of stromal cell characterization in OC and their role in classifying

pathological subtypes is still lacking. To address this knowledge gap,

a study utilized scRNA-seq to identify phenotypes of stromal cells
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and discover novel potential therapeutic targets in HGSOC (79).

The findings revealed that myofibroblasts, fibroblasts, mesothelial

cells, and lymphatic endothelial cells are associated with poor

survival, while plasma cells are linked to a favorable prognosis.

Importantly, different molecular subgroups exhibit distinct stromal

cell phenotypes; for example, the mesenchymal type displays a

fibroblast phenotype, while the immunoreactive type exhibits an

immune cell phenotype. Moreover, a phenotype indicative of poor

prognosis is correlated with an unfavorable outcome of the

corresponding molecular subtype. The diverse phenotypes

resulting from stromal admixture provide insights into the

association between molecular subgroups and prognosis and

highlight the limitations of previous molecular typing in

predicting poor prognosis. In the future, classifying patients based

on phenotype biomarkers may serve as a viable approach for precise

prognosis and targeted therapeutic interventions.

The wide utilization of single-cell sequencing technology

enables the generation of more comprehensive information about

OC, including its heterogeneity, molecular subtypes, and diverse

cell populations (Table 2). These findings contribute to the

discovery of prognostic biomarkers and the advancement of

targeted therapies. Encouragingly, immunotherapy and targeted

therapy, such as PD1/PD-L1 inhibitors and PARPi, based on the

molecular phenotype, have been recommended as first-line

treatment in combination with carboplatin and paclitaxel (80).
5 Exploration of immune-related
signatures and comprehensive
landscape of TME in OC

OC is widely recognized as an immunogenic tumor and the

TME in OC is closely linked to immunotherapy efficacy and

prognosis (81). The TME is a complex ecosystem comprising

malignant cells, immune-infiltrated cells, stromal cells, and non-

cellular elements (Figure 4). Various types of immune cells infiltrate

the TME, such as clusters of myeloid-derived suppressor cells,

lymphocytes, macrophages, mast cells, neutrophils, and dendritic

cells, playing crucial roles in tumor progression, recurrence, and

metastasis, with both favorable and unfavorable effects (82). The

heterogeneous TME in ovarian cancer OC mirrors the intertumor

diversity of this malignancy. For instance, a study identified varying

immunological molecular characteristics across different degrees of

metastatic lesions in a patient with HGSOC who underwent

multiple chemotherapies (83). Furthermore, the coexistence of

inflammatory and non-immune infiltrated microenvironments

was observed in various untreated patients with HGSOC,

suggesting significant variation in infiltrating immune cells (84).

The inherent heterogeneity of the TME in OC makes it challenging

to conduct effective therapies (81). Moreover, tumor metastasis in

OC has been strongly linked to the TME (85). Malignant cells in

EOC have a higher propensity for metastasis and the establishment

of a peritoneal microenvironment compared to solid tumors (86).

Consequently, investigating TME heterogeneity is imperative for

identifying new therapeutic targets and prognostic markers. While
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the molecular classification of OC is based on traditional

sequencing, single-cell data plays a crucial role in advancing

personalized immunotherapy.

Over the years, single-cell sequencing has been extensively

employed in various studies to identify novel immunotherapy

approaches for diverse cancers (31, 87). This technology offers
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significant advantages in exploring tumor immune infiltration,

immune cell types, and the interaction between immune cells and

malignant cells (88). Encouragingly, numerous novel therapies

targeting anti-angiogenesis, anti-fibrogenesis, and immune

checkpoint inhibition have emerged to combat the TME (89).

While various immunotherapies prove beneficial in the presence
TABLE 2 Key findings related to tumor heterogeneity and identification of cancer cell subtypes obtained using single-cell sequencing.

Tumor Technology Key findings References

HGSOC scRNA-seq Coexistence of all four molecular types (differentiated, proliferative, mesenchymal, and immunoreactive) within
a single HGSOC sample

(62)

Serous
OC

scRNA-seq Primary tumors showed significant heterogeneity among individual patients, whereas gene expressions in
metastatic tumors were remarkably homogeneous, but distinct from those in primary tumors

(64)

HGSOC scRNA-seq Identified six cell types within ovarian cancer, including epithelial cells, fibroblast cells, T cells, B cells,
macrophages, and endothelial cells, and the JUN pathway is a promising therapeutic target.

(65)

HGSOC scRNA-seq Revealed a strong association between secretory FTE cells and HGSOC subtypes, highlighting the phenotypic
heterogeneity of cancer cells originating from the original cells.

(9)

HGSOC scRNA-seq Identified two subclasses of cancer cells associated with poor prognosis in HGSOC, which can survive during
initial therapy and induce immunosuppression

(71)

HGSOC Multi-omics Analysis
of single-cell- seq

Significant heterogeneity gives rise to various subclasses of HGSOC, but a non-constant subclass exists among
malignant epithelial cells.

(72)

OC scRNA-seq Analyze the heterogeneity of OC, normal ovary, and embryo samples; Eight distinct cell types were identified,
and genetic expression analysis revealed similarities between embryo and OC samples

(73)

HGSOC scRNA-seq Myofibroblasts, fibroblasts, mesothelial cells, and lymphatic endothelial cells are associated with poor survival,
while plasma cells are linked to a favorable prognosis.

(74)
HGSOC, high-grade serous ovarian cancer; scRNA-seq, single-cell RNA sequencing; FTE, fallopian tube epithelium; OC, ovarian cancer.
FIGURE 4

Tumor Microenvironment in Ovarian Cancer. Based on the degree of immune cell infiltration, ovarian cancer can be categorized into immune-
infiltrated, immune-excluded, and immune-desert types. The tumor microenvironment in ovarian cancer is complex, comprising various cell types
whose interactions play a crucial role in tumor initiation and progression.
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of specific biomarkers, their effectiveness varies among patients due

to the heterogeneity of the TME. For instance, checkpoint inhibitors

aimed at restoring CD8+ T cell function demonstrated

unsatisfactory responses in OC patients (90). Therefore,

conducting a comprehensive analysis of immune heterogeneity

and the composition of tumor tissue is highly advantageous in

identifying potential immunotherapeutic targets and predicting

prognosis based on the immune status. The TME in ascites also

plays a crucial role in tumor development. Ascites is characterized

by multiple cell types and a complex microenvironment (91). To

comprehensively characterize the TME of ovarian carcinoma

ascites, a study employed single-cell sequencing technology to

analyze ascites samples from 22 OC cases (9). Like primary

ovarian tumors, ascites exhibits significant inter-patient

heterogeneity, primarily in distinct cancer-associated fibroblast

(CAF) populations and immune cell subtypes. Interestingly, the

JAK/STAT pathway was activated in both CAFs and malignant

cells, suggesting its potential as a crucial mechanism driving ascites

development and drug resistance in OC. Currently, a clinical trial

(NCT02713386) is investigating the efficacy of ruxolitinib, a JAK/

STAT pathway inhibitor, in treating of HGSOC (92).

To capture both the spatial distribution of immune infiltrates

and their overall expression, researchers proposed the concept of

the immunity continuum (93, 94). This novel concept defines three

immunophenotypes based on the spatial distribution and extent of

T cell infiltration: immune-infiltrated (T cells infiltrate the tumor

epithelium), immune-excluded (T cells accumulate in the stromal

region), and immune-desert phenotypes (low or no T cell

infiltration) (Figure 4). The distinct infiltration patterns lead to

inconsistent responses of OC to immunotherapy. Hornburg et al.

recently employed single-cell sequencing to investigate the

composition of the OC immune microenvironment and identify

the immunophenotypes (95). They identified distinct features in the

immune-desert phenotype of OC, including enhanced metabolic

pathways, reduced antigen presentation, and an enrichment of

monocytes and immature macrophages. Furthermore, the

infiltrated and excluded phenotypes of cancer exhibit differences

in immunocyte and fibroblast subpopulations. Specifically, the

immune-excluded phenotype showed an enrichment of pre-

dysfunctional CD8+ GZMK T cells, while the immune-desert

phenotype exhibited enrichments of FCN1 monocytes and

MARCO macrophages. Multiple cytochemokine receptor-ligand

interactions were identified in the TME, including CXCL16-

CXCR6-mediated communication between tumor cells and

immune cells and CXCL12/14-CXCR4-mediated communication

between stromal cells and immune cells, potentially regulating the

phenotype of immune infiltration (95). While immune cells

infiltrating metastatic lesions do not consistently exert positive

effects, T cell always plays a central role in immunotherapy

methods (96). Another study employed single-cell approach to

reveal diverse immunological cell clusters and subtypes,

elucidating their potential roles in anti-tumor immunity and the

progression of OC metastasis (97). The researchers categorized

these OC cases into two groups based on T cell infiltration: the high-

infiltrated T cell group and the low-infiltrated T cell group. The

results revealed an enrichment of TOX+ CD8+ and granulysin+
Frontiers in Immunology 10
CD4+ T cell subtypes in the high-infiltrated T cell group.

Additionally, a distinct population of MKI67+ plasmablasts was

identified within this group. Lastly, NR1H2+ IRF8+ and CD274+

macrophage subtypes were discovered, demonstrating their positive

response to tumor cells. These newly identified immune cell

subtypes with cytotoxic properties during the anti-tumor immune

response may provide potential targets for treating of

ovarian tumors.

While HGSOC with immune infiltration generally exhibits a

more favorable prognosis than other types (98), it can still exhibit

resistance to immunotherapies (99). Therefore, investigating

different types of tumor-infiltrating lymphocytes is significant due

to this discrepancy. A research team identified a triple-positive

marker, comprising the co-expression of CD39, CD103, and PD-1,

for tumor-infiltrating lymphocytes in HGSOC (100). Specifically,

the triple-positive CD8+ T cells exhibited reduced receptor diversity

and high gene expressions associated with cytolysis and humoral

immune response. Meanwhile, triple-positive Tregs displayed

receptor diversity and tumor residency. The triple-positive tumor-

infiltrating lymphocytes exhibit remarkable prognostic capabilities

and suggest potential combination targets for immunotherapies,

including CD39, PD-1, and TIGIT.

The EMT determines the characteristics of ovarian tumors (17,

101), and it plays a crucial role in tumor metastasis, invasiveness,

and drug resistance, and indicates poor survival in HGSOC patients

(102, 103). Therefore, it is imperative to further explore detailed

information about EMT in the TME to advance innovative

immunotherapy strategies. Subsequently, a study depicted the

ecosystem landscape of early- and late-stage HGSOC by analyzing

the heterogeneity of the TME and the characteristics of EMT using

single-cell sequencing (104). The notable findings include a

prognostic prediction model comprising four EMT-related genes

(NOTCH1, SNAI2, TGFBR1, and WNT11) associated with poor

survival. Additionally, the dominant cancer-associated fibroblasts

were characterized by the presence of five distinct genes (a-SMA,

vimentin, COL3A, COL10A, and MMP11), which contribute to the

development of EMT features and enhance tumor invasiveness.

Moreover, the study suggested that TIGIT blockade could serve as a

potential therapeutic strategy in HGSOC.

Immunotherapies in OC have shown limited efficacy, primarily

due to an incomplete understanding of their biological potencies

and underlying mechanisms. For example, immune checkpoint

inhibitors have demonstrated significant efficacy in various solid

tumors; however, their effectiveness in OC is comparatively lower

(105, 106). Relevant studies have indicated that the functional

capacity of T and NK cells, rather than their abundance, is critical

in the context of immunotherapy (107, 108). Therefore, it is crucial

to investigate the response of diverse cell types, especially immune-

related cells, to immunotherapy drugs and understand the

associated alterations in their cellular states. A research team

performed immune function and scRNA-seq analyses using an

innovative co-culture model of HGSOC organoids and immune

cells treated with a combination of anti-PD-1 and anti-PD-L1

antibodies, aiming to compare the effects with those of traditional

anti-PD-1 or anti-PD-L1 monotherapies (109). The novel antibody

induced favorable alterations in immune-associated cells,
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particularly leading to a shift in NK cells and a subtype of CD8+ T

cells into an aggressive and cytotoxic state. These findings

demonstrate that state changes in immune cells are crucial for the

effectiveness of immunotherapy, and bispecific antibodies can elicit

a superior immune response compared to monospecific antibodies.

In conclusion, OC has huge potential as a viable target for

immunotherapies, provided that these treatments employ precise

mechanistic approaches targeting specific immune-related cell

clusters. Then, a study conducted single-cell and bulk RNA

sequencing of blood samples from patients with EOC after

neoadjuvant chemotherapy (NACT) to examine the function of

circulating immune cells in the periphery (110). Single-cell

examinations revealed an increased abundance of central memory

CD8+ T cells and regulatory T cells during NACT, as well as an

upregulation in the expression of monocyte and HLA class II genes.

Thus, chemotherapy alleviated immune suppression by enhancing

antigen presentation. Furthermore, the levels of CD8+ T cells and

the expression of PD-1/PD-L1 in circulating T cells in the

peripheral circulation did not increase. These promising findings

have important implications for the efficacy of immune checkpoint

inhibitor drugs in the treatment of OC.

In conclusion, these novel single-cell sequencing technologies

provide insights into the functional and spatial characteristics of the

tumor immune microenvironment, highlighting the importance of

personalized immunotherapies to address the heterogeneity of the

TME. By conducting single-cell sequencing, comprehensive

information about immune responses, which was previously

obscured in bulk sequencing, can be elucidated, leading to the

discovery and application of new therapeutic targets and

innovative methods.
6 Investigation of the drug resistance
mechanisms in OC

The clinical progression of advanced ovarian malignancy is

characterized by its aggressiveness. Initially, it exhibits a favorable

response to platinum-based chemotherapy, but the majority of

patients experience relapse over time, ultimately developing

resistance to platinum-based medications (111). Despite the fact

that initial treatment is effective in approximately 70% of patients

with HGSOC (112), chemoresistance often emerges during the

course of therapy, posing a significant obstacle to successful

treatment (113). The improvement of current therapeutic

strategies for OC strongly depends on our understanding of the

molecular mechanisms underlying drug resistance and the

identification of specific cell subtypes with inherent resistance to

chemotherapy. However, it remains unknown whether resistant

clones arise due to genomic instability or therapy-related genome

damage during tumor formation or as a result of chemotherapy. A

study demonstrated that drug resistance observed in clinical

practice follows a continuum, resulting from Darwinian

evolutionary selection of inherently resistant clusters among

diverse subtypes of cancer cells (114). Identifying these subgroups

with unfavorable characteristics, such as tumor stem cells or clusters

exhibiting chemoresistance, may unveil the molecular mechanisms
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clinical practice when accessible therapies targeting these molecular

“switches” are developed. Single-cell techniques enable

comprehensive interpretation of the transcriptional and genetic

changes associated with chemotherapy in individual malignant

cells. Furthermore, it allows for a detailed examination of the

interaction between tumor cells and their microenvironment.

To investigate the mechanisms underlying chemoresistance in

HGSOC, a research group prospectively collected tumor specimens

before and after chemotherapy and conducted single-cell

transcriptome analyses with high-resolution (115). They observed

an increasing trend in stress-related cell states during chemotherapy

by removing confounding patient factors using an innovative

analytical method called PRIMUS. This observation was further

validated through in-situ RNA hybridization and bulk sequencing.

Moreover, stress-related conditions were initially present in the

tumor tissue, and the associated subclones consistently expanded

during chemotherapy, ultimately resulting in unfavorable survival

outcomes. The presence of inflammatory cancer-associated

fibroblast subgroups within tumors suggests a drug-induced stress

response in both malignant and stromal cells, triggering a paracrine

feed-forward loop (115). Notably, tumor stroma has been

recognized to play a crucial role in drug resistance across various

malignancies, and an increased stromal component in OC is

associated with chemotherapy resistance (116, 117). Finally, they

identified a specific condition of chemoresistance that involves both

stromal signaling and subclone development at the single-cell level.

A different research team investigated the single-cell properties

associated with the gradual development of carboplatin resistance

in OC (118). In this study, multiple isogenic clones attained similar

levels of drug resistance following successive treatment cycles;

however, there was considerable heterogeneity in their

transcriptomes. Two traits have been linked to chemoresistance:

extensive inhibition of the P phase found in all clones in the initial

phases of resistance development and recurring activation of the Q

phase detected in a particular clone in the later stages of treatment.

Furthermore, distinct clones associated with resistance were found

to induce an IFN response during the P phase or activate Wnt

signaling during the Q phase. These findings suggest a theory of

hysteresis in resistance, specifically the transition between the P and

Q phases, which influences the dynamics of drug exposure and

resistance. Additionally, they established a novel method for

monitoring cellular states during chemotherapy to enhance

efficacy. A separate study examined the development of resistance

in HGSOC cells following chemotherapy (119). Analysis of single-

cell RNA sequencing data obtained from HGSOC tumors collected

during therapy revealed three distinct phenotypic archetypes that

contribute to the progression of HGSOC. These archetypes, which

exhibit characteristics related to metabolism and proliferation,

cellular defense response, and DNA repair signaling, were

consistently observed among all patients. The analysis uncovered

a notable transition towards the metabolism and proliferation

archetype in cancer cells subjected to multiple lines of treatment,

suggesting the emergence of specialized subclones within the tumor.

Over the years, numerous studies have demonstrated that

diverse drug responses can be attributed to the co-progression of
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cancer and non-cancer cells (83, 120). The increased infiltration of

CAFs may contribute to the reduced response rates observed with

certain therapies, including immune checkpoint inhibitors, as their

efficacy is influenced by the TME (121). This theory was validated

through a single-cell experiment, demonstrating the interaction

between CAFs and macrophages in modulating the biological

processes of OC cells within the ascites microenvironment (9).

Specifically, CAFs activate the JAK/STAT pathway in malignant

cells by secreting IL-6, leading to reduced survival rates and the

emergence of chemoresistance (9).

In summary, drug resistance may not be linked to gene mutations

but instead be associated with specific resistant subclones or cellular

phenotypes, which reflects the heterogeneity of tumors. Studies

conducted in other solid tumors have also shown a close relationship

between the emergence of drug resistance and cancer heterogeneity

(122). However, the intra-tumor heterogeneity of malignant cells in

OC, as well as the heterogeneity of related non-malignant cells, remains

poorly understood despite their significant roles in driving

chemoresistance. Therefore, research into the mechanisms of

therapeutic resistance in OC is still in its early stages. Our current

understanding only begins to uncover the fundamental mechanisms

responsible for drug resistance, with many aspects still awaiting

complete clarification. Encouragingly, single-cell sequencing provides

support for researchers to describe the mechanisms of chemoresistance

in OC at a high-resolution level.
7 Investigation of metastatic
dissemination in OC

Over 90% of tumor-related deaths are attributed to the intricate

biological process of cancer metastatic dissemination (123). Various

metastatic patterns and mechanisms have been proposed during

tumor progression, including lymphatic metastasis, hematogenous

spread, and intraperitoneal implantation of malignant cells (124);

however, they remain poorly understood. During tumor metastasis,

metastatic cells invade the circulation, survive as CTCs, and

subsequently extravasate and seed into distant locations (123).

Specifically, OC colonizes the peritoneal cavity by disseminating

tumor cells (DTCs) through attachment and seeding (124). The

DTC clusters that escape from primary tumors are commonly

referred to as the metastatic “seeds” (125). The persistence of

DTCs indicates the presence of a subpopulation of non- or slow-

cycling tumor cells in primary tumors, which may possess innate

drug resistance features or acquire resistance abilities during

chemotherapy (126). However, knowledge about metastatic cell

subtypes and other mechanisms related to metastasis is still

lacking in the current research context, which limits the

development of highly effective therapeutics against OC

metastasis. Besides tumor cell subpopulations, the TME consists

of various stromal cells with distinct molecular characteristics (127).

The dissemination of tumor cells is a prerequisite for metastasis and

is associated with EMT (128). Within the TME, EMT is primarily

regulated by tumor-stroma interactions, particularly through the

TGFb signaling pathway secreted by CAFs (129). Therefore, it is
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hypothesized that a specific subpopulation may exist in the TME,

enabling them to evade chemotherapy and migrate from the

primary site, leading to tumor Metastasis. Consequently, the

identification of this crucial tumor cell subpopulation in OC may

provide novel targets for therapeutic interventions aimed at

preventing metastasis and recurrence. The current state of single-

cell sequencing technology is highly advanced and well-suited for

in-depth exploration of molecular biology at the level of

individual cells.

In 2021, a team performed a single-cell transcriptome analysis

to uncover the characteristics of HGSOC. Through trajectory

analysis, they identified an association between metastatic OC

and the dysfunction of various signaling pathways, especially the

“translational machinery” pathway (70). Subsequently, a study

revealed the multi-omics landscape of HGSOC using single-cell

sequencing technology (16). The results demonstrated an identical

pattern of genetic expression and DNA methylation in the same

genetic lineage of primary and metastatic cancer cells, suggesting

that the metastatic cells are likely subclones derived from the

original tumor. Next, a team performed scRNA-seq on primary

and metastatic tumor tissues of OC (130). They observed up-

regulated expressions of ERBB2 and HOXB-AS3 in metastatic

samples compared to primary lesions. Furthermore, several

signaling pathways were dysregulated in metastatic samples of

HGSOC. Additionally, malignant-associated fibroblasts with EMT

progression were elevated in metastatic lesions and contributed to

angiogenesis and immune regulation. Analysis of clinical outcomes

revealed that EMT was associated with a poor prognosis (130).

Finally, single-cell sequencing of 6 metastatic omentum lesions

from OC unveiled the gene characteristics in the immune

microenvironment of metastatic lesions, providing a basis for

further investigation into the mechanisms underlying metastasis

(97). However, each study has its own specific aims and limitations.

A comprehensive solution will eventually emerge as we make

incremental advancements in our understanding. As an

illustration, one study has revealed a straightforward yet equally

significant observation: metastasis necessitates a smaller number of

epithelial cells to sustain the microenvironment in comparison to

the original tumors (69).

In summary, these findings at the single-cell resolution will

provide a comprehensive understanding of metastatic occurrence

and progression, leading to the discovery of new therapeutic targets

and ultimately improving patient outcomes for OC in the near

future. Furthermore, a comprehensive and precise description of

tumor heterogeneity, the immune microenvironment, dynamic

alterations in cell subtypes, and intercellular interactions in

metastatic lesions is crucial for future advanced research.
8 Exploration of the initiated
recurrences in OC

Following primary debulking surgery and subsequent

chemotherapy, 70%-80% of OC patients experience tumor

recurrence and gradually develop resistance to first-line
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chemotherapies (131). Consequently, it is crucial to comprehend

the risk factors associated with OC recurrence and develop reliable

prognostic models for predicting and preventing recurrence. Intra-

tumor heterogeneity and complex tumor biology behaviors are

associated with tumor recurrence, drug resistance, and poor

survival outcomes (132). In recent years, numerous studies

utilizing single-cell approaches have elucidated the principles and

characteristics that govern the onset and progression of

OC recurrence.

The progress of innovative therapies for OC patients has been

hindered by the absence of reliable markers for identifying and

targeting relapse initiators. Encouragingly, a research group

performed scRNA-seq to identify the “trigger” of recurrence

occurrence (26). In this study, pseudotime analysis was utilized to

trace the lineage of metastatic malignant cells prior to seeding.

Specifically, seven subclusters were identified in the primary tumor,

and the CYR61+ “stress” subgroup was deemed as the initiator of

recurrence. Additionally, it was demonstrated that a subset of RGS5+

CAFs actively promotes malignant dissemination. Thus, the

combination of CYR61+ and RGS5+ was significantly correlated

with OC relapse and patient survival. Interestingly, harnessing the

high resolution of single-cell sequencing, distinct cellular compositions

were observed in untreated and recurrent ovarian tumors (26). In

untreated metastatic lesions, immune cells comprised 40% of the total

cells, while malignant cells accounted for 30%. In contrast, immune

cells constituted only 0.5% of the cell population in recurrent lesions,

whereas malignant cells constituted as high as 90%. Furthermore, in

untreated malignant lesions, interactions between T cells and apoptotic

cancer cells have been observed (26). Conversely, chemotherapy-

induced cancer cell dormancy promotes malignancy progression

(133), enabling evasion of immune surveillance. Based on the

aforementioned findings, it is reasonable to infer that chemotherapy

may impact the immune status, resulting in chemotherapy resistance

and ultimately leading to cancer recurrence. However, further in-depth

investigations are required to validate this inference.

The primary cause of recurrence has been hypothesized to be

chemotherapy-induced residual DTCs (127). Furthermore,

tumorigenesis, maintenance, and recurrence are also dependent

on CSCs, as demonstrated in multiple studies (134, 135). Strong

evidence from preclinical models and patient samples indicates that

platinum-based chemotherapy promotes the enrichment of drug-

resistant aldehyde dehydrogenase positive (ALDH+) ovarian CSCs

(136), which play a role in tumor relapse and disease recurrence

(137). CSCs are often in a non-active state, rendering chemotherapy

targeting rapidly proliferating cells ineffective against them (138,

139). Therefore, tumor recurrence, metastasis, and ultimately,

multi-line drug resistance may be strongly associated with CSCs

that evade treatment. Notably, the presence of CSCs is of particular

interest as a potentially valuable therapeutic target in OC. Although

malignant lesions contain a low proportion of CSCs, the

identification and targeting of these cells are critical for

improving the poor survival rate of ovarian malignancy (134,

135). A study concentrated on markers associated with CSCs in

OC and identified stromal cell subtypes that express these markers

(67). Their initial analysis using scRNA-seq revealed a small

subpopulation of cancer stem-like cells in OC. Similar to previous
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studies, a team using a single-cell approach was unable to identify

cells that co-expressed established stem cell markers (97). However,

they did identify a cell population closely resembling embryonic

stem cells (ESCs) adjacent to the epithelial cell cluster, which

exhibited high expression of the proliferative marker MKI67. The

successful identification, isolation, and investigation of putative

ESCs may yield valuable insights into the characteristics of CSCs

in OC. Further advancement in this field depends on accurately

identifying and quantifying the frequencies of CSCs in OC lesions,

and single-cell level sequencing represents an effective and accurate

method for this purpose.

In conclusion, findings obtained through single-cell analysis

provide new insights into OC recurrence and the heterogeneity of

cell types in both primary and recurrent lesions. In the future,

studies utilizing single-cell technology will elucidate the

mechanisms underlying tumor recurrence, leveraging its high-

resolution capabilities and multi-omicss analysis.
9 Exploration of the origin of OC

Evidence from animal models and genetic studies suggests that

HGSOC may originate from the secretory epithelium in the distal

fallopian tube (140–142). Furthermore, a study using single-cell

sequencing technology provided further confirmation of this theory

by revealing the single-cell landscape of normal fallopian tubes

(143). Additionally, it was confirmed that PAX8, SOX17, and

RUNX3 are potential key factors involved in the differentiation of

oviduct epithelial cells, with “secretory” epithelial cells potentially

serving as the precursors of most HGSCs. Nevertheless, it remains

unclear whether there are distinct subgroups of FTE cells and how

these subgroups correlate with OC cell subtypes. In an innovative

study, scRNA-seq technology was employed to explore normal

fallopian tube tissue and identify molecular subtypes of FTE cells,

shedding light on tubal epithelial heterogeneity and its relationship

to the origin of serous OC (10). The occurrence of nongenetic

heterogeneity in individual tumors is attributed to the unique cell-

cell interactions. The researchers identified six molecular subclasses

of FTE cells, and their findings demonstrated that investigating the

molecular characteristics of FTE cells, which serve as the origin of

serous OC, allows for precise quantification of nongenetic

heterogeneity in serous OC. The molecularly characterized atlases

of benign fallopian tube cells will enhance our understanding of

early lesions in OC, potentially facilitating the identification of

biomarkers for early diagnosis. Furthermore, another group

demonstrated through single-cell transcriptome analysis and

developmental trajectory analysis that a tumor cell subtype highly

expresses ciliated epithelial markers, confirming that ovarian

malignancies originate from FTE cells and retain the

characteristics of their progenitor cells (70). Likewise, the genetic

signature of certain tumor cell subtypes was described in a recent

study, providing further confirmation of their origin from fallopian

tube cells (79). These studies overlap in their assertion that single-

cell sequencing offers unique advantages in investigating the origin

of OC. It allows the tracking of originating cells traits through

trajectory analysis and enables accurate analysis of the genetic
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phenotype similarities between normal cells and malignant cells.

Accordingly, exploring the progenitor lineage of malignant cells

holds great value for early-stage OC diagnosis by identifying

meaningful early diagnostic indicators.

10 Spatial transcriptome and
multi-omicss analysis based on
single-cell sequencing

10.1 Spatial transcriptomes

Single-cell sequencing still has certain technical limitations,

including the absence of intercellular spatial information and the

challenge of reconstructing the chronological order of cellular

evolution. Encouragingly, in 2016, Stahl et al. invented a

sequencing method known as spatial transcriptomics, combining

sing-cell transcriptomics with spatial positions to decipher cellular

composition and intercellular communications in a spatial context

(144). By integrating single-cell sequencing with spatial

transcriptomics and developing pseudo-time analysis, the above

limitations could be overcome, enabling the unrestricted

application of single-cell sequencing. As the latest sequencing

technology, spatial transcriptomics enables the visualization and

quantification of transcriptomes of specific tissue slices in a two-

dimensional resolution of specific tissue slices (145). Spatial

transcriptomics and temporal lineage tracing stimulate the

investigation of the original spatial information, dynamic

development, and differentiation of isolated cells. Additionally,

spatial information plays a crucial role in understanding cancer
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heterogeneity and is essential for cancer diagnosis, subtyping,

grouping, and therapy (146). This novel technology provides gene

expression data from specific regions of tissue sections, enabling the

identification of cell types and the analysis of intercellular

relationships within these regions (Figure 5) (147). Through

advanced bioinformatics analyses, the integration of single-cell

sequencing and spatial transcriptomics enables the spatial

localization of distinct cell subpopulations, annotation of

transcriptome location information, and precise analysis of TME

heterogeneity from the perspective of intercellular interactions. The

powerful integration of these new technologies ensures both the

accuracy of tumor-related research and the efficient development of

tumor diagnosis methods.

In 2018, 10X Genomics acquired spatial transcriptomics

technology and developed the modified sequencing platform

known as 10X Visium, which has become the most commonly

used platform. In 2020, the first research article utilizing this

commercialized platform was published (148). This study

integrated single-cell and spatial transcriptome data and identified

a tumor-specific keratinocyte in cutaneous squamous cell

carcinoma, which plays an important role in intercellular

communication. The latest research on OC employed spatial

transcriptomics technology to investigate the differential

characteristics of HGSOC before and after neoadjuvant therapy

(147). This study identified distinct tumor subclones within

individual tumor sections, each with unique copy number

alteration (CNA) profiles and spatial distributions. Additionally,

subclone-specific microenvironments enriched in genes encoding

plasma membrane and secreted proteins were uncovered. Similarly,

in 2022, a professional team utilized spatial transcriptomics to
FIGURE 5

Single-cell Spatial Transcriptomics in Ovarian Cancer. The single-cell spatial transcriptomics technology allows for the spatial reconstruction of
cells, mapping different cell types and their interactions onto HE-stained tissue sections. This innovative approach complements the limitations
of traditional single-cell sequencing by providing crucial spatial information on cell-to-cell communication and interactions within the ovarian
cancer microenvironment.
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uncover the mysteries of HGSOC (149). Their study revealed

significant spatially defined heterogeneity among patients

exhibiting different responses to NACT. Spatial analyses

comparing poor and good responders to chemotherapy indicated

that spatial interactions among adjacent cell types can influence

chemotherapy responsiveness. Moreover, they identified spatially

defined cell types within ovarian tumors that exhibited drug

resistance, with mesenchymal cells being the most prominent

type. Overall, spatial transcriptomics of single-cell shed light on

the intra-tumoral subclonal and infiltrative heterogeneity in OC,

contributing to a better comprehension of biological characteristic.

The Xenium in situ platform, a new spatial transcriptomics

product developed by 10X Genomics, offers advanced capabilities

for mapping hundreds of transcripts in situ at subcellular resolution

(150). Building upon the features of the 10X Visium platform,

Xenium in situ introduces several enhancements, including a larger

imageable area and the integration of gene expression data with

histological images (including H&E and IF staining) from the same

tissue section. The initial Xenium kits support up to 400 gene plexes

and allow for the inclusion of up to 100 custom RNA targets that

can be added to pre-designed panels. The platform offers a

throughput of approximately 2.8 cm2 of imageable area per slide,

with the potential to reach up to 17 cm2 per week. Furthermore,

Xenium in situ is designed to support even higher throughput, with

the capability to handle gene plexes exceeding 1000, as well as

enabling concurrent protein and RNA measurements on the same

tissue section. A recent study explored eight preliminary Xenium

datasets from the mouse brain and two from human breast cancer

(151). By comparing scalability, resolution, data quality, capacities,

and limitations with eight other spatially resolved transcriptomics

technologies, the study found that Xenium represents a significant

improvement compared to other RCA-based technologies. Its

enhanced detection efficiency and resolution enable the

identification of cell types in spatial context, making it a valuable

tool for exploring spatial biology. Xenium In Situ has already been

utilized in breast cancer research to gain biological insights into the

progression from ductal carcinoma in situ (DCIS) to infiltrating

carcinoma and to predict the hormone receptor status of tumor

subtypes (150, 152). Researchers identified that PGR may serve as a

novel marker for the transition between DCIS and invasive cancer.

It is anticipated that Xenium in situ will also find applications in

ovarian cancer research in the near future.

In 2020, a new spatial transcriptomics technology called

GeoMx™ Digital Spatial Profiler (DSP) was developed (153). This

technology enables highly multiplexed detection of mRNA targets

in formalin-fixed paraffin-embedded (FFPE) tissues. The DSP

system employs RNA in situ hybridization (ISH) techniques to

profile user-defined regions of interest. This is achieved through

region-specific cleaving and the collection of photocleaved indexing

oligos. The cleaved indices are then quantified using NanoString

nCounter® technology, which provides digital quantification of

RNA expression with spatial context. The system is user-friendly,

minimizes hands-on time, and can deliver highly sensitive digital

quantification of protein or RNA expression in less than a 4-day

turnaround time. A recent study utilized the GeoMx® Cancer

Transcriptome Atlas to correlate the protein profiles of small
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extracellular vesicles (sEVs) derived from human fallopian tube

epithelium (hFTE) with the tissue transcripts of hFTE (154). Spatial

transcriptomics analysis revealed cell-type specific transcripts in

hFTE that encode sEVs proteins. Notably, proteins such as FLNA,

TUBB, JUP, and FLNC exhibited differential expression in secretory

cells, which are precursor cells for HGSOC. This study provides

valuable insights into understanding the role of hFTE-derived sEVs

during the development of ovarian cancer.
10.2 Single-cell multi-omics

Single-cell multi-omics sequencings encompass not only

transcriptomics but also genomics, proteomics, metabolomics, and

epigenetics, providing comprehensive information about OC in a high-

throughput manner. For example, single-cell genomics analysis can

identify nucleotide variations and polymorphisms (155). Importantly,

multi-omics analysis addresses certain limitations of transcriptome

analysis alone, such as enabling the distinction of diverse cell

subpopulations and the tracing of cellular lineages. The progression

of cancer involves not only transcriptome-level variations but also

genome mutations, epigenetic regulation, and proteomic changes.

Single-cell multi-omicss sequencing can systematically describe

tumor heterogeneity and explore molecular mechanisms in multiple

dimensions, which can meet the requirements of comprehensive

analysis in OC. Therefore, investigating multi-omicss alterations and

related epigenetic management provides a landscape of molecular

features in OC, which can contribute to improving innovative

diagnosis and treatment approaches.

Encouragingly, the field of single-cell multi-omics analysis in OC is

rapidly advancing. Recently, a professional team characterized the

tumor heterogeneity and elucidated the pathological mechanisms in

HGSOC by conducting simultaneous analyses of gene, transcriptome,

and epigenome features at the level of single tumor cells (16). This

study confirmed that OC cells exhibit upregulation of interferon

pathways and metabolism-related genes through epigenetic

regulation of promoters. Additionally, through the analysis of gene

expression and DNA methylation, they discovered similar patterns

within the same lineage between primary and metastatic tumors,

providing evidence that metastatic cells may already exist within

primary subclones. Subsequently, another research team integrated

scRNA-seq and the single-cell assay for transposase-accessible

chromatin using sequencing (scATAC-seq) to elucidate the

regulatory mechanisms governing cancer cells at a single-cell

resolution in ovarian and endometrial tumors (156). This research

highlighted the remarkable heterogeneity of gynecologic tumors

through the analysis of the relationship between gene expression and

chromatin accessibility. Another study innovatively uses single-cell

proteomic analysis to characterize brain metastases of OC, revealing

possible oncogenic pathways and immunosuppressive mechanisms,

which may also be involved in the occurrence of metastases (157).

These significant results will pave the way for more individualized

therapy choices in OC. Moreover, single-cell genome sequencing has

been employed to investigate latent cell-cluster states, focusing on the

diversity of copy numbers in ovarian malignancies (158). Single-cell

genome sequencing possesses distinct advantages in accurately
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1288027
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1288027
determining CNAs and mutations (159, 160), thereby enhancing the

precision of stratification for treatment and prognosis in genetically

unstable tumors (161, 162), which cannot be achieved through

transcriptome sequencing alone.

In addition to the methods mentioned above, several other

multi-omics approaches have been developed and applied to

various diseases. One such method is Co-indexing of

transcriptomes and epitopes by sequencing (CITE-seq), which

combines the highly multiplexed antibody-based detection of

protein markers with unbiased transcriptome profiling for

thousands of single cells in parallel (163). This technique is

compatible with existing single-cell sequencing approaches and

can readily scale as the throughput of these methods increases.

CITE-seq has been utilized to uncover spatially distinct germinal

center reactions in the tonsil and early immune activation in the

skin at the injection site of the Coronavirus Disease 2019 mRNA

vaccine (164). Another innovative method is ATAC with Select

Antigen Profiling by sequencing (ASAP-seq), which robustly

detects cell surface and intracellular proteins using oligo-labeled

antibodies in combination with high-throughput single-cell ATAC-

seq (165). ASAP-seq allows for the simultaneous profiling of

accessible chromatin and protein levels by pairing sparse

scATAC-seq data with the robust detection of hundreds of cell

surface and intracellular protein markers, with the optional capture

of mitochondrial DNA (mtDNA) for clonal tracking. This approach

captures three distinct modalities in single cells. In conjunction with

DOGMA-seq, a novel adaptation of the CITE-seq method for

measuring gene activity across the central dogma of gene

regulation, systematic multi-omics profi l ing has been

demonstrated. This approach reveals coordinated and distinct

changes in chromatin, RNA, and surface proteins during native

hematopoietic differentiation, peripheral blood mononuclear cell

stimulation, and as a combinatorial decoder and reporter of

multiplexed perturbations in primary T cells. Furthermore, in

2021, 10X Genomics developed a “multiome” approach, which

allows for the simultaneous capture of both transcriptomic and

epigenomic modalities in the same single cells using Chromium

Single Cell Multiome ATAC+Gene Expression (166). This

technique eliminates computational errors associated with linking

separate datasets and maximizes the information obtained from

precious samples. With a unified view of a cell’s open chromatin

landscape and gene expression profile, researchers can decipher

how cell types and states are established, discover new gene

regulatory interactions, and interpret epigenetic profiles alongside

key expression markers. Notably, a professional team utilized this

approach to investigate the chromatin and gene-regulatory

dynamics of the developing human cerebral cortex at single-cell

resolution (167). While these new technologies have not yet been

widely adopted in ovarian cancer research, it is foreseeable that they

will play a significant role in this field in the near future.

These innovative studies utilizing multi-omicss approaches

provide insights into crucial genetic and epigenetic characteristics

related to OC. Encouragingly, multi-dimensional single-cell

sequencing analysis empowers us to acquire precise internal

landscapes, detailed profiles, and intercellular interactions within

malignant tumors, bringing us closer to unraveling the enigma of
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cancer initiation and progression. Nonetheless, these emerging

sequencing technologies and single-cell-based analysis methods

are still in the developmental phase, requiring further

experimentation and time to assess their practical applicability.
11 Combination of single-cell
sequencing with emerging
innovative technology

The integration of single-cell sequencing with emerging

innovative technologies in OC research holds significant promise

as it leverages and synergizes their respective strengths. For

instance, a study utilized a 3D culture system to establish an in

vitro OC model that closely mimics the in vivo environment (168).

Referred to as single cell-derived metastatic OC spheroids, this 3D

system consists of cells derived from metastatic ascites. This model

was then integrated with single-cell sequencing to precisely

characterize the distinctive features of OC (168). In 2022, a

research team integrated multiplex immunofluorescence

technology and digital histopathology with single-cell sequencing

and whole-genome sequencing to analyze cancer tissues from 42

newly diagnosed OC patients (169). Their findings revealed that

tumors with HRD mutations exhibit inflammatory signals, and the

immunoediting process is characterized by reduced HLA diversity

and impaired CD8+ T cell function. Through the integration of

single-cell techniques, this advanced technology holds the promise

of enabling detailed research and facilitating more precise treatment

strategies for OC.

Meanwhile, the uploading and sharing of single-cell sequencing

data maximizes the utilization of scientific research resources. Over

the years, numerous studies have compared and analyzed multiple

datasets of single-cell sequencing in OC, leading to significant

scientific achievements through bioinformatics analysis (170–

175). Individual studies based on single-cell sequencing

technology face limitations in terms of analysis breadth, scope of

investigation, and available data volume. However, these limitations

can be mitigated by combining sequencing data from multiple

studies, enabling comprehensive analyses that incorporate diverse

populations across multiple centers in different countries, thus

yielding more representative results. For instance, by conducting

a comprehensive analysis of the OC scRNA-seq dataset GSE118828,

a research team provided a novel perspective on understanding the

progression of OC (176). They successfully identified the

predominant M2-like tumor-associated macrophages and

discovered several novel markers, including IL4I1, that play a

crucial role in tumorigenesis and progression. Building upon

these novel findings, they developed a RiskScore system utilizing

markers linked to the OC progression that demonstrated a robust

correlation with the prognosis of this patient population.

Subsequently, a research team performed an integrated analysis of

two single-cell datasets and TCGA-OC data, resulting in the

identification of a two-gene signature (CXCL13 and IL26) with

noteworthy prognostic implications and potential for advancing

immunotherapy in OC treatment (177). In 2021, a group carried
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out an analysis of inter-cellular heterogeneity in OC using scRNA-

seq data (178). Through this approach, distinct clusters and their

corresponding marker genes were identified. Moreover, through the

integration of the TCGA OC dataset, they uncovered a set of

differentially expressed marker genes significantly associated with

the prognosis of OC, including ANP32E, STAT1, GPRC5A, EGFL6,

PMP22, FBXO21, and CYB5R3. Furthermore, single-cell databases

play a pivotal role in bioinformatics analysis. For example, a study

utilized two single-cell databases (CancerSEA and TISCH) to

investigate the function and expression pattern of CD47 in

different immune cells at the single-cell level (179). By leveraging

these tools, a comprehensive understanding of CD47 and its

heterogeneous expression across different immune cell types has

been achieved. These findings provide valuable insights into

potential biomarkers that can contribute to our understanding of

the prognosis and progression of OC.
12 Discussion and perspectives

Single-cell sequencing and its derivative technologies have

revolutionized our comprehension of OC by facilitating the

analysis of individual cells within tumors, unraveling their

heterogeneity, and yielding insights into tumor biology and the

tumor microenvironment. As previously mentioned, the capture of

heterogeneity at the single-cell level has enabled researchers to

identify distinct cell populations, elucidate clonal evolution, and

unravel the spatial organization of cells within the tumor.

Moreover, employing this innovative biological technology,

studies have identified diverse stromal cell populations that

facilitate tumor growth and impact tumor progression.

Investigations into the genetic heterogeneity of OC through

single-cell sequencing have unveiled the existence of multiple

subpopulations of cancer cells with distinct gene expression

profiles and evolutionary trajectories. These recent and innovative

insights are vital for comprehending the mechanisms underlying

therapy resistance. Furthermore, the combination of single-cell

sequencing with spatial transcriptomics enables the revelation of

spatial heterogeneity and tumor architecture within ovarian tumors,

allowing for the identification of distinct cell populations and their

spatial correlations with gene expression patterns.

The application of single-cell sequencing in OC research holds

immense promise for advancing diagnostics, therapeutics, and

prognostics. By identifying novel cell populations and characterizing

their gene expression profiles, new biomarkers for early detection and

prognosis of ovarian carcinoma can be potentially revealed. These

knowledges may help guide treatment decisions, predict treatment

response, and develop personalized therapeutic strategies (180, 181).

Additionally, single-cell sequencing has the potential to enhance

immunotherapy strategies in OC. By profiling immune cell

populations and their functional states within the tumor

microenvironment, researchers can identify immunotherapeutic

targets and biomarkers of response to immunotherapy, aiding in the

development of personalized immunotherapeutic approaches and

improvement of patient outcomes.
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While single-cell sequencing has brought significant

advancements to OC research, several limitations and challenges

remain. One major limitation is the technical variability and high

costs associated with this novel experiments. Standardizing

protocols and optimizing data analysis pipelines are necessary to

ensure reproducibility and cost-effectiveness. Another challenge is

the limited scalability of single-cell sequencing technologies. The

current throughput of single-cell sequencing platforms is often

insufficient to comprehensively capture the entire cellular

heterogeneity within tumors. Increasing the throughput while

maintaining high-quality data will be crucial for more

comprehensive analysis. Furthermore, data analysis and

interpretation are complex due to the large volume of data

generated by single-cell sequencing experiments. Advanced

computational algorithms and tools are required for the

integration and visualization of multi-omics datasets, enabling the

extraction of meaningful biological insights. Based on the

aforementioned studies, it is evident that the majority of research

focuses on the prevalent EOC, with limited attention given to rare

pathological types of OC. In the future, it is crucial to allocate

attention to other pathological types as well. Undoubtedly, single-

cell sequencing will greatly contribute to the elucidation of the

etiology and the development of innovative treatments for OC.

To address the limitations and maximize the potential of single-

cell sequencing in OC research, several areas of future development

should be considered. Firstly, technological advancements: ongoing

improvements in single-cell sequencing technologies, including

increased throughput, improved sensitivity, and reduced costs,

will enhance the scalability and accessibility of this approach.

Secondly, integration of multi-omics data: integrating single-cell

sequencing data with other omics data, such as epigenomics and

proteomics, will contribute to a more comprehensive understanding

of the molecular mechanisms underlying OC. Thirdly, development

of computational tools: advancing the development of

computational tools and algorithms for data analysis,

interpretation, and integration will facilitate the extraction of

meaningful insights from complex single-cell datasets. Fourthly,

longitudinal studies: conducting longitudinal studies using single-

cell sequencing will enable the tracking of clonal evolution and the

dynamic changes in cellular populations over time, providing

valuable insights into disease progression and treatment response.

Lastly, validation and translation: validating single-cell sequencing

findings using larger patient cohorts and longitudinal studies is

crucial for the clinical translation of research findings.

Collaborations among researchers, clinicians, and industry

partners will be vital in bridging the gap between research and

clinical applications.

In conclusion, single-cell sequencing has revolutionized our

understanding of OC by unraveling its heterogeneity, characterizing

the tumor microenvironment, and identifying potential biomarkers

and therapeutic targets. Despite the existence of challenges and

limitations, ongoing advancements in technology, data analysis, and

validation efforts offer great promise for the future of single-cell

sequencing in enhancing diagnosis, treatment strategies, and

patient outcomes in OC.
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