34 research outputs found

    The Role of Toll-Like Receptor 9 in Chronic Stress-Induced Apoptosis in Macrophage

    Get PDF
    Emerging evidence implied that chronic stress has been exerting detrimental impact on immune system functions in both humans and animals. Toll-like receptors (TLRs) have been shown to play an essential role in modulating immune responses and cell survival.We have recently shown that TLR9 deficiency protects against lymphocyte apoptosis induced by chronic stress. However, the exact role of TLR9 in stress-mediated change of macrophage function remains unclear. The results of the current study showed that when BALB/c mice were treated with restraint stress (12 h daily for 2 days), the number of macrophages recruited to the peritoneal cavity was obviously increased. Results also demonstrated that the sustained effects of stress elevated cytokine IL-1β, TNF-α and IL-10 production yet diminished IFN-γ production from macrophage, which led to apoptotic cell death. However, TLR9 deficiency prevented the chronic stress-mediated accumulation of macrophages. In addition, knocking out TLR9 significantly abolished the chronic stress-induced imbalance of cytokine levels and apoptosis in macrophage. TLR9 deficiency was also found to reverse elevation of plasma IL-1β, IL-10 and IL-17 levels and decrease of plasma IFN-γ level under the condition of chronic stress. These results indicated that TLR9-mediated macrophage responses were required for chronic stress-induced immunosuppression. Further exploration showed that TLR9 deficiency prevented the increment of p38 MAPK phosphorylation and reduction of Akt/Gsk-3β phosphorylation; TLR9 deficiency also attenuated the release of mitochondrial cytochrome c into cytoplasm, caused upregulation of Bcl-2/Bax protein ratio, downregulation of cleavage of caspase-3 and PARP, as well as decreased TUNEL-positive cells in macrophage of stressed mice. Collectively, our studies demonstrated that deficiency of TLR9 maintained macrophage function by modulating macrophage accumulation and attenuating macrophage apoptosis, thus preventing immunosuppression in restraint-stressed mice

    Studies of Isolated and Non-isolated Photospheric Bright Points in an Active Region Observed by the New Vacuum Solar Telescope

    Get PDF
    Properties of photospheric bright points (BPs) near an active region have been studied in TiO λ 7058 Å images observed by the New Vacuum Solar Telescope of the Yunnan Observatories. We developed a novel recognition method that was used to identify and track 2010 BPs. The observed evolving BPs are classified into isolated (individual) and non-isolated (where multiple BPs are observed to display splitting and merging behaviors) sets. About 35.1% of BPs are non-isolated. For both isolated and non-isolated BPs, the brightness varies from 0.8 to 1.3 times the average background intensity and follows a Gaussian distribution. The lifetimes of BPs follow a log-normal distribution, with characteristic lifetimes of (267 ± 140) s and (421 ± 255) s, respectively. Their size also follows log-normal distribution, with an average size of about (2.15 ± 0.74) × 104 km2 and (3.00 ± 1.31) × 104 km2 for area, and (163 ± 27) km and (191 ± 40) km for diameter, respectively. Our results indicate that regions with strong background magnetic field have higher BP number density and higher BP area coverage than regions with weak background field. Apparently, the brightness/size of BPs does not depend on the background field. Lifetimes in regions with strong background magnetic field are shorter than those in regions with weak background field, on average

    Lightweight and efficient dual-path fusion network for iris segmentation

    No full text
    Abstract In order to tackle limitations of current iris segmentation methods based on deep learning, such as an enormous amount of parameters, intensive computation and excessive storage space, a lightweight and efficient iris segmentation network is proposed in this article. Based on the classical semantic segmentation network U-net, the proposed approach designs a dual-path fusion network model to integrate deep semantic information and rich shallow context information at multiple levels. Our model uses the depth-wise separable convolution for feature extraction and introduces a novel attention mechanism, which strengthens the capability of extracting significant features as well as the segmentation capability of the network. Experiments on four public datasets reveal that the proposed approach can raise the MIoU and F1 scores by 15% and 9% on average compared with traditional methods, respectively, and 1.5% and 2.5% on average compared with the classical semantic segmentation method U-net and other relevant methods. Compared with the U-net, the proposed approach reduces about 80%, 90% and 99% in terms of computation, parameters and storage, respectively, and the average run time up to 0.02 s. Our approach not only exhibits a good performance, but also is simpler in terms of computation, parameters and storage compared with existing classical semantic segmentation methods

    Synthesis of hierarchical Sn/SnO nanosheets assembled by carbon-coated hollow nanospheres as anode materials for lithium/sodium ion batteries

    Get PDF
    This journal is The Royal Society of Chemistry. Tin-based anode materials have aroused interest due to their high capacities. Nevertheless, the volume expansion problem during lithium insertion/extraction processes has severely hindered their practical application. In particular, nano-micro hierarchical structure is attractive with the integrated advantages of nano-effect and high thermal stability of the microstructure. Herein, hierarchical Sn/SnO nanosheets assembled by carbon-coated hollow nanospheres were successfully synthesized by a facile glucose-assisted hydrothermal method, in which the glucose served as both morphology-control agent and carbon source. The hierarchical Sn/SnO nanosheets exhibit excellent electrochemical performances owing to the unique configuration and carbon coating. Specifically, a reversible high capacity of 2072.2 mA h g-1 was observed at 100 mA g-1. Further, 964.1 mA h g-1 after 100 cycles at 100 mA g-1 and 820.4 mA h g-1 at 1000 mA g-1 after 300 cycles could be obtained. Encouragingly, the Sn/SnO also presents certain sodium ion storage properties. This facile synthetic strategy may provide new insight into fabricating high-performance Sn-based anode materials combining the advantages of both structure and carbon coating

    Structure and electrochemical performance modulation of a LiNi0.8Co0.1Mn0.1O2 cathode material by anion and cation co-doping for lithium ion batteries

    Get PDF
    Ni-rich layered transition metal oxides show great energy density but suffer poor thermal stability and inferior cycling performance, which limit their practical application. In this work, a minor content of Co and B were co-doped into the crystal of a Ni-rich cathode (LiNi0.8Co0.1Mn0.1O2) using cobalt acetate and boric acid as dopants. The results analyzed by XRD, TEM, XPS and SEM reveal that the modified sample shows a reduced energy barrier for Li+ insertion/extraction and alleviated Li+/Ni2+ cation mixing. With the doping of B and Co, corresponding enhanced cycle stability was achieved with a high capacity retention of 86.1% at 1.0C after 300 cycles in the range of 2.7 and 4.3 V at 25 °C, which obviously outperformed the pristine cathode (52.9%). When cycled after 300 cycles at 5C, the material exhibits significantly enhanced cycle stability with a capacity retention of 81.9%. This strategy for the enhancement of the electrochemical performance may provide some guiding significance for the practical application of high nickel content cathodes

    Fe-Nx Sites enriched microporous carbon nanoflower planted with tangled bamboo-like carbon nanotube as a strong polysulfides anchor for lithium-sulfur batteries

    No full text
    Serious shuttle effect and sluggish conversion kinetics of lithium polysulfides (LiPSs) have a massive impact on obstructing the practical application of lithium-sulfur (Li-S) batteries. To address such issues, Fe-Nx sites enriched microporous nanoflowers planted with tangled bamboo-like carbon nanotubes (Fe-Nx-C/Fe3C-CNTs NFs) are found to be effective catalytic mediators with strong anchoring capabilities for LiPSs. The bamboo-like carbon nanotubes catalyzed by Fe3C/Fe entangled each other to form a conductive network, which encloses a flower-like microporous carbon core with embedded well-dispersed Fe-Nx active sites. As expected, electrons smoothly transfer along the dense conductive bamboo-like carbon network while the flower-like carbon core consisting of micropores induces the homogeneous distribution of tiny sulfur and favors the lithium ions migration with all directions. Meanwhile, Fe-Nx sites strongly trap long-chain LiPSs with chemical anchoring, and catalyze the redox conversion of LiPSs. Due to the aforementioned synergistic effects, the S@Fe-Nx-C/Fe3C-CNTs NFs cathode exhibited a remarkable specific capacity (635 mAh g(s)(-1)) at 3 C and a favorable capacity decay with 0.04% per cycle even after 400 cycles at 1 C. (C) 2020, Institute of Process Engineering, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd

    Glymphatic and lymphatic communication with systemic responses during physiological and pathological conditions in the central nervous system

    No full text
    Abstract Crosstalk between central nervous system (CNS) and systemic responses is important in many pathological conditions, including stroke, neurodegeneration, schizophrenia, epilepsy, etc. Accumulating evidence suggest that signals for central-systemic crosstalk may utilize glymphatic and lymphatic pathways. The glymphatic system is functionally connected to the meningeal lymphatic system, and together these pathways may be involved in the distribution of soluble proteins and clearance of metabolites and waste products from the CNS. Lymphatic vessels in the dura and meninges transport cerebrospinal fluid, in part collected from the glymphatic system, to the cervical lymph nodes, where solutes coming from the brain (i.e., VEGFC, oligomeric α-syn, β-amyloid) might activate a systemic inflammatory response. There is also an element of time since the immune system is strongly regulated by circadian rhythms, and both glymphatic and lymphatic dynamics have been shown to change during the day and night. Understanding the mechanisms regulating the brain-cervical lymph node (CLN) signaling and how it might be affected by diurnal or circadian rhythms is fundamental to find specific targets and timing for therapeutic interventions

    Cauliflower-like MnO@C/N composites with multiscale, expanded hierarchical ordered structures as electrode materials for Lithium- and Sodium-ion batteries

    No full text
    MnO@C/N composite with expanded cauliflower-like morphology was prepared via one-pot L-tryptophan assisted hydrothermal method following by annealing in Ar atmosphere. The cauliflower structure was assembled by porous nanowires that composed of MnO nanoparticles wrapped by continuous N-doped amorphous carbon matrix. Superior electrochemical performances were obtained in both lithium/sodium ion batteries. And the reaction kinetics of MnO@C/N in lithium/sodium ion batteries were analyzed and compared. More than 837 mAh g¿1 could be retained after 300 cycles at 500 mA g¿1. And a high reversible capacity of 336 mAh g¿1 at 5000 mA g¿1 also demonstrate the excellent rate performance of MnO@C/N for LIBs. As to SIBs, 123 mAh g¿1 could be maintained after 200 cycles at 100 mA g¿1. The superior performances could be attributed to the peculiar porous micro-nano structure and N-doped amorphous carbon coating. The reaction kinetics results revealed that the capacitive-controlled capacity would dominate of the electrochemical performance in SIBs and the diffusion-controlled capacity could play a more important role in LIBs, due to the atom weight and size of Na+ is larger than Li+

    The role of toll-like receptor 9 in chronic stress-induced apoptosis in macrophage.

    Get PDF
    Emerging evidence implied that chronic stress has been exerting detrimental impact on immune system functions in both humans and animals. Toll-like receptors (TLRs) have been shown to play an essential role in modulating immune responses and cell survival. We have recently shown that TLR9 deficiency protects against lymphocyte apoptosis induced by chronic stress. However, the exact role of TLR9 in stress-mediated change of macrophage function remains unclear. The results of the current study showed that when BALB/c mice were treated with restraint stress (12 h daily for 2 days), the number of macrophages recruited to the peritoneal cavity was obviously increased. Results also demonstrated that the sustained effects of stress elevated cytokine IL-1β, TNF-α and IL-10 production yet diminished IFN-γ production from macrophage, which led to apoptotic cell death. However, TLR9 deficiency prevented the chronic stress-mediated accumulation of macrophages. In addition, knocking out TLR9 significantly abolished the chronic stress-induced imbalance of cytokine levels and apoptosis in macrophage. TLR9 deficiency was also found to reverse elevation of plasma IL-1β, IL-10 and IL-17 levels and decrease of plasma IFN-γ level under the condition of chronic stress. These results indicated that TLR9-mediated macrophage responses were required for chronic stress-induced immunosuppression. Further exploration showed that TLR9 deficiency prevented the increment of p38 MAPK phosphorylation and reduction of Akt/Gsk-3β phosphorylation; TLR9 deficiency also attenuated the release of mitochondrial cytochrome c into cytoplasm, caused upregulation of Bcl-2/Bax protein ratio, downregulation of cleavage of caspase-3 and PARP, as well as decreased TUNEL-positive cells in macrophage of stressed mice. Collectively, our studies demonstrated that deficiency of TLR9 maintained macrophage function by modulating macrophage accumulation and attenuating macrophage apoptosis, thus preventing immunosuppression in restraint-stressed mice

    Inhibition of Toll-Like Receptor 9 Attenuates Sepsis-Induced Mortality Through Suppressing Excessive Inflammatory Response

    No full text
    Sepsis, a major clinical problem with high morbidity and mortality, is caused by overwhelming systemic host-inflammatory response. Toll-like receptors (TLRs) play a fundamental role in induction of hyperinflammation and tissue damage in sepsis. In this study, we demonstrate a protective role of TLR9 inhibition against the dysregulated inflammatory response and tissue injury in sepsis. TLR9 deficiency decreased the mortality of mice following cecal ligation and puncture (CLP)-induced sepsis. TLR9 knockout mice showed dampened p38 activation and augmented Akt phosphorylation in the spleen, lung and liver. In addition, TLR9 deficiency decreased the levels of inflammatory cytokines and attenuated splenic apoptosis after CLP. These results indicate that TLR9 inhibition might offer a novel therapeutic strategy for the management of sepsis
    corecore