4,076 research outputs found

    Coupled-channel analysis of the possible D(∗)D(∗)D^{(*)}D^{(*)}, Bˉ(∗)Bˉ(∗)\bar{B}^{(*)}\bar{B}^{(*)} and D(∗)Bˉ(∗)D^{(*)}\bar{B}^{(*)} molecular states

    Get PDF
    We perform a coupled-channel study of the possible deuteron-like molecules with two heavy flavor quarks, including the systems of D(∗)D(∗)D^{(*)}D^{(*)} with double charm, Bˉ(∗)Bˉ(∗)\bar{B}^{(*)}\bar{B}^{(*)} with double bottom and D(∗)Bˉ(∗)D^{(*)}\bar{B}^{(*)} with both charm and bottom, within the one-boson-exchange model. In our study, we take into account the S-D mixing which plays an important role in the formation of the loosely bound deuteron, and particularly, the coupled-channel effect in the flavor space. According to our calculation, the states D(∗)D(∗)[I(JP)=0(1+)]D^{(*)}D^{(*)}[I(J^P)=0(1^+)] and (D(∗)D(∗))s[JP=1+](D^{(*)}D^{(*)})_s[J^P=1^+] with double charm, the states Bˉ(∗)Bˉ(∗)[I(JP)=0(1+),0(2+),1(0+),1(1+),1(2+)]\bar{B}^{(*)}\bar{B}^{(*)}[I(J^P)=0(1^+),0(2^+),1(0^+),1(1^+),1(2^+)], (Bˉ(∗)Bˉ(∗))s[JP=0+,1+,2+](\bar{B}^{(*)}\bar{B}^{(*)})_s[J^P=0^+,1^+,2^+] and (Bˉ(∗)Bˉ(∗))ss[JP=0+,1+,2+](\bar{B}^{(*)}\bar{B}^{(*)})_{ss}[J^P=0^+,1^+,2^+] with double bottom, and the states D(∗)Bˉ(∗)[I(JP)=0(0+),0(1+)]D^{(*)}\bar{B}^{(*)}[I(J^P)=0(0^+),0(1^+)] and (D(∗)Bˉ(∗))s[JP=0+,1+](D^{(*)}\bar{B}^{(*)})_s[J^P=0^+,1^+] with both charm and bottom are good molecule candidates. However, the existence of the states D(∗)D(∗)[I(JP)=0(2+)]D^{(*)}D^{(*)}[I(J^P)=0(2^+)] with double charm and D(∗)Bˉ(∗)[I(JP)=1(1+)]D^{(*)}\bar{B}^{(*)}[I(J^P)=1(1^+)] with both charm and bottom is ruled out.Comment: 1 figure added, published in Physical Review

    Gear optimization

    Get PDF
    The use of formal numerical optimization methods for the design of gears is investigated. To achieve this, computer codes were developed for the analysis of spur gears and spiral bevel gears. These codes calculate the life, dynamic load, bending strength, surface durability, gear weight and size, and various geometric parameters. It is necessary to calculate all such important responses because they all represent competing requirements in the design process. The codes developed here were written in subroutine form and coupled to the COPES/ADS general purpose optimization program. This code allows the user to define the optimization problem at the time of program execution. Typical design variables include face width, number of teeth and diametral pitch. The user is free to choose any calculated response as the design objective to minimize or maximize and may impose lower and upper bounds on any calculated responses. Typical examples include life maximization with limits on dynamic load, stress, weight, etc. or minimization of weight subject to limits on life, dynamic load, etc. The research codes were written in modular form for easy expansion and so that they could be combined to create a multiple reduction optimization capability in future

    Medical Image Segmentation Based on Multi-Modal Convolutional Neural Network: Study on Image Fusion Schemes

    Full text link
    Image analysis using more than one modality (i.e. multi-modal) has been increasingly applied in the field of biomedical imaging. One of the challenges in performing the multimodal analysis is that there exist multiple schemes for fusing the information from different modalities, where such schemes are application-dependent and lack a unified framework to guide their designs. In this work we firstly propose a conceptual architecture for the image fusion schemes in supervised biomedical image analysis: fusing at the feature level, fusing at the classifier level, and fusing at the decision-making level. Further, motivated by the recent success in applying deep learning for natural image analysis, we implement the three image fusion schemes above based on the Convolutional Neural Network (CNN) with varied structures, and combined into a single framework. The proposed image segmentation framework is capable of analyzing the multi-modality images using different fusing schemes simultaneously. The framework is applied to detect the presence of soft tissue sarcoma from the combination of Magnetic Resonance Imaging (MRI), Computed Tomography (CT) and Positron Emission Tomography (PET) images. It is found from the results that while all the fusion schemes outperform the single-modality schemes, fusing at the feature level can generally achieve the best performance in terms of both accuracy and computational cost, but also suffers from the decreased robustness in the presence of large errors in any image modalities.Comment: Zhe Guo and Xiang Li contribute equally to this wor

    Maritime coverage enhancement using UAVs coordinated with hybrid satellite-terrestrial networks

    Get PDF
    Due to the agile maneuverability, unmanned aerial vehicles (UAVs) have shown great promise for on-demand communications. In practice, UAV-aided aerial base stations are not separate. Instead, they rely on existing satellites/terrestrial systems for spectrum sharing and efficient backhaul. In this case, how to coordinate satellites, UAVs and terrestrial systems is still an open issue. In this paper, we deploy UAVs for coverage enhancement of a hybrid satellite-terrestrial maritime communication network. Using a typical composite channel model including both large-scale and small-scale fading, the UAV trajectory and in-flight transmit power are jointly optimized, subject to constraints on UAV kinematics, tolerable interference, backhaul, and the total energy of the UAV for communications. Different from existing studies, only the location-dependent large-scale channel state information (CSI) is assumed available, because it is difficult to obtain the small-scale CSI before takeoff in practice and the ship positions can be obtained via the dedicated maritime Automatic Identification System. The optimization problem is non-convex. We solve it by using problem decomposition, successive convex optimization and bisection searching tools. Simulation results demonstrate that the UAV fits well with existing satellite and terrestrial systems, using the proposed optimization framework

    Optimal Beamforming for Hybrid Satellite Terrestrial Networks with Nonlinear PA and Imperfect CSIT

    Get PDF
    In hybrid satellite-terrestrial networks (HSTNs), spectrum sharing is crucial to alleviate the "spectrum scarcity" problem. Therein, the transmit beams should be carefully designed to mitigate the inter-satellite-terrestrial interference. Different from previous studies, this work considers the impact of both nonlinear power amplifier (PA) and large-scale channel state information at the transmitter (CSIT) on beamforming. These phenomena are usually inevitable in a practical HSTN. Based on the Saleh model of PA nonlinearity and the large-scale multi-beam satellite channel parameters, we formulate a beamforming optimization problem to maximize the achievable rate of the satellite system while ensuring that the inter-satellite-terrestrial interference is below a given threshold. The optimal amplitude and phase of desired beams are derived in a decoupled manner. Simulation results demonstrate the superiority of the proposed beamforming scheme.Comment: 5 pages, 5 figures, journa
    • …
    corecore