14 research outputs found

    Influencing factors of resident satisfaction in smart community services: An empirical study in Chengdu

    Get PDF
    Smart communities have shown great advantages in China\u27s pandemic control, but also exposed the shortcomings that some smart community services (SCS) are out of touch with residents\u27 needs in the post-pandemic era. Therefore, This study aims to explore those SCSs were needed to promote the sustainable development of smart communities. Based on the expectation disconfirmation theory and the modified ASCI model, this study establishes a smart community service resident satisfaction model and analyzes it with Amos structural equation model. The study results are as follows: (1) SCS outcome, ICT infrastructure, and SCS delivery all have a positive influence on resident satisfaction and their performances decrease in turn. (2) some of the factors that drive resident satisfaction most, such as Smart Property Service and Public Facility, have a lower rating. (3) residents are more concerned about the cost (including financial and emotional costs) than the quality of the SCSs. (4) Most residents\u27 expectations of SCS are irrational and that’s why it does not have a significant impact on satisfaction. (5) Resident Satisfaction is an important factor in enhancing Resident Confidence in SCS and promoting Resident Participation in improving SCS. This enlightens us that improving resident satisfaction is one of the effective ways to promote the sustainable development of Smart Community and continuously enhance the emergency response capabilities of grassroots communities in the post-pandemic era

    Layered intercalation compounds: Mechanisms, new methodologies, and advanced applications

    No full text
    The structural characteristics of two-dimensional (2-D) materials result in unique physical, electronic, chemical, and optical properties, making them potentially useful in a wide range of applications. These unique properties can be fine-tuned and enhanced via intercalation, expanding the applications of various 2-D intercalation compounds to a much wider scope. This article aims to provide an overview of innovations in the field of intercalation chemistry of 2-D intercalation materials, as well as to highlight their leading applications. A brief perspective on the intercalation of 2-D layered compounds is provided, focusing on mechanisms, approaches, and influential factors involving intercalation. Insights into the potential applications, challenges, and future opportunities of 2-D intercalated materials are discussed

    Response of Intestinal Microbiota to the Variation in Diets in Grass Carp (Ctenopharyngodon idella)

    No full text
    The intestinal microbiota is important for the nutrient metabolism of fish and is significantly influenced by the host’s diet. The effect of ryegrass and commercial diets on the intestinal microbiota of grass carp was compared in this study. In comparison to ryegrass, artificial feed significantly reduced the microbial diversity in the intestine, which was measured by a decrease in the observed OTUs, ACE, Shannon, and the InvSimpson index. Although grass carp fed with ryegrass and artificial feed shared a dominant phyla Firmicutes and Proteobacteria, the microbial composition was clearly distinguishable between the two groups. In grass carp fed with ryegrass, Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria predominated, whereas Bacilli was significantly higher in the artificial feed group due to an increase in Weissella and an unassigned Bacillales bacteria, as well as a significant increase in a potential pathogen: Aeromonas australiensis. Grass carp fed with ryegrass exhibited a more complex ecological network performed by the intestinal bacterial community, which was dominated by cooperative interactions; this was also observed in grass carp fed with artificial feed. Despite this, the increase in A. australiensis increased the competitive interaction within this ecological network, which contributed to the vulnerable perturbation of the intestinal microbiota. The alteration of the microbial composition through diet can further affect microbial function. The intestinal microbial function in grass carp fed with ryegrass was rich in amino acids and exhibited an increased energy metabolism in order to compensate for a low-nutrient diet intake, while the artificial feed elevated the microbial lipid metabolism through the promotion of its synthesis in the primary and secondary bile acids, together with a notable enhancement of fatty acid biosynthesis. These results indicated that diet can affect the homeostasis of the intestinal microbiota by altering the microbial composition and the interspecific interactions, whilst microbial function can respond to a variation in diet

    Factors Affecting Parent’s Perception on Air Quality—From the Individual to the Community Level

    No full text
    The perception of air quality significantly affects the acceptance of the public of the government’s environmental policies. The aim of this research is to explore the relationship between the perception of the air quality of parents and scientific monitoring data and to analyze the factors that affect parents’ perceptions. Scientific data of air quality were obtained from Wuhan’s environmental condition reports. One thousand parents were investigated for their knowledge and perception of air quality. Scientific data show that the air quality of Wuhan follows an improving trend in general, while most participants believed that the air quality of Wuhan has deteriorated, which indicates a significant difference between public perception and reality. On the individual level, respondents with an age of 40 or above (40 or above: OR = 3.252; 95% CI: 1.170–9.040), a higher educational level (college and above: OR = 7.598; 95% CI: 2.244–25.732) or children with poor healthy conditions (poor: OR = 6.864; 95% CI: 2.212–21.302) have much more negative perception of air quality. On the community level, industrial facilities, vehicles and city construction have major effects on parents’ perception of air quality. Our investigation provides baseline information for environmental policy researchers and makers regarding the public’s perception and expectation of air quality and the benefits to the environmental policy completing and enforcing

    Buried Interfaces in Halide Perovskite Photovoltaics

    No full text
    Understanding the fundamental properties of buried interfaces in perovskite photovoltaics is of paramount importance to the enhancement of device efficiency and stability. Nevertheless, accessing buried interfaces poses a sizeable challenge because of their non‐exposed feature. Herein, the mystery of the buried interface in full device stacks is deciphered by combining advanced in situ spectroscopy techniques with a facile lift‐off strategy. By establishing the microstructure–property relations, the basic losses at the contact interfaces are systematically presented, and it is found that the buried interface losses induced by both the sub‐microscale extended imperfections and lead‐halide inhomogeneities are major roadblocks toward improvement of device performance. The losses can be considerably mitigated by the use of a passivation‐molecule‐assisted microstructural reconstruction, which unlocks the full potential for improving device performance. The findings open a new avenue to understanding performance losses and thus the design of new passivation strategies to remove imperfections at the top surfaces and buried interfaces of perovskite photovoltaics, resulting in substantial enhancement in device performance

    Buried Interfaces in Halide Perovskite Photovoltaics.

    No full text
    Understanding the fundamental properties of buried interfaces in perovskite photovoltaics is of paramount importance to the enhancement of device efficiency and stability. Nevertheless, accessing buried interfaces poses a sizeable challenge because of their non-exposed feature. Herein, the mystery of the buried interface in full device stacks is deciphered by combining advanced in situ spectroscopy techniques with a facile lift-off strategy. By establishing the microstructure-property relations, the basic losses at the contact interfaces are systematically presented, and it is found that the buried interface losses induced by both the sub-microscale extended imperfections and lead-halide inhomogeneities are major roadblocks toward improvement of device performance. The losses can be considerably mitigated by the use of a passivation-molecule-assisted microstructural reconstruction, which unlocks the full potential for improving device performance. The findings open a new avenue to understanding performance losses and thus the design of new passivation strategies to remove imperfections at the top surfaces and buried interfaces of perovskite photovoltaics, resulting in substantial enhancement in device performance
    corecore