1,504 research outputs found

    Holographic thermalization with a chemical potential in Gauss-Bonnet gravity

    Get PDF
    Holographic thermalization is studied in the framework of Einstein-Maxwell-Gauss-Bonnet gravity. We use the two-point correlation function and expectation value of Wilson loop, which are dual to the renormalized geodesic length and minimal area surface in the bulk, to probe the thermalization. The numeric result shows that larger the Gauss-Bonnet coefficient is, shorter the thermalization time is, and larger the charge is, longer the thermalization time is, which implies that the Gauss-Bonnet coefficient can accelerate the thermalization while the charge has an opposite effect. In addition, we obtain the functions with respect to the thermalization time for both the thermalization probes at a fixed charge and Gauss-Bonnet coefficient, and on the basis of these functions, we obtain the thermalization velocity, which shows that the thermalization process is non-monotonic. At the middle and later periods of the thermalization process, we find that there is a phase transition point, which divides the thermalization into an acceleration phase and a deceleration phase. We also study the effect of the charge and Gauss-Bonnet coefficient on the phase transition point.Comment: 23 pages, many figures,footnote 4 is modified. arXiv admin note: substantial text overlap with arXiv:1305.484

    Holographic thermalization in noncommutative geometry

    Get PDF
    Gravitational collapse of a shell of dust in noncommutative geometry is probed by the renormalized geodesic length, which is dual to probe the thermalization by the two-point correlation function in the dual conformal field theory. We find that larger the noncommutative parameter is, longer the thermalization time is, which implies that the large noncommutative parameter delays the thermalization process. We also investigate how the noncommutative parameter affects the thermalization velocity and thermalization acceleration.Comment: some materials have been delete

    Van der Waals-like phase transition from holographic entanglement entropy in Lorentz breaking massive gravity

    Get PDF
    In this paper, phase transition of AdS black holes in lorentz breaking massive gravity has been studied in the framework of holography. We find that there is a first order phase transition(FPT) and second order phase transition(SPT) both in Bekenstein-Hawking entropy(BHE)-temperature plane and holographic entanglement entropy(HEE)-temperature plane. Furthermore, for the FPT, the equal area law is checked and for the SPT, the critical exponent of the heat capacity is also computed. Our results confirm that the phase structure of HEE is similar to that of BHE in lorentz breaking massive gravity, which implies that HEE and BHE have some potential underlying relationship.Comment: 10 pages, 10 figure

    Mutual correlation in the shock wave geometry

    Full text link
    We probe the shock wave geometry with the mutual correlation in a spherically symmetric Reissner Nordstr\"om AdS black hole on the basis of the gauge/gravity duality. In the static background, we find that the regions living on the boundary of the AdS black holes are correlated provided the considered regions on the boundary are large enough. We also investigate the effect of the charge on the mutual correlation and find that the bigger the value of the charge is, the smaller the value of the mutual correlation will to be. As a small perturbation is added at the AdS boundary, the horizon shifts and a dynamical shock wave geometry forms after long time enough. In this dynamic background, we find that the greater the shift of the horizon is, the smaller the mutual correlation will to be. Especially for the case that the shift is large enough, the mutual correlation vanishes, which implies that the considered regions on the boundary are uncorrelated. The effect of the charge on the mutual correlation in this dynamic background is found to be the same as that in the static background.Comment: 10 page

    Well-posedness of the fractional Ginzburg-Landau equation

    Get PDF
    In this paper, we investigate the well-posedness of the real fractional Ginzburg-Landau equation in several different function spaces, which have been used to deal with the Burgers' equation, the semilinear heat equation, the Navier-Stokes equations, etc. The long time asymptotic behavior of the nonnegative global solutions is also studied in details

    Canonical interpretation of Y(10750)Y(10750) and Υ(10860)\Upsilon(10860) in the Υ\Upsilon family

    Full text link
    Inspired by the new resonance Y(10750)Y(10750), we calculate the masses and two-body OZI-allowed strong decays of the higher vector bottomonium sates within both screened and linear potential models. We discuss the possibilities of Υ(10860)\Upsilon(10860) and Y(10750)Y(10750) as mixed states via the S−DS-D mixing. Our results suggest that Y(10750)Y(10750) and Υ(10860)\Upsilon(10860) might be explained as mixed states between 5S5S- and 4D4D-wave vector bbˉb\bar{b} states. The Y(10750)Y(10750) and Υ(10860)\Upsilon(10860) resonances may correspond to the mixed states dominated by the 4D4D- and 5S5S-wave components, respectively. The mass and the strong decay behaviors of the Υ(11020)\Upsilon(11020) resonance are consistent with the assignment of the Υ(6S)\Upsilon(6S) state in the potential models.Comment: 9 pages, 4 figures. More discussions are adde

    Full-heavy tetraquark states and their evidences in the LHCb di-J/ψJ/\psi spectrum

    Full text link
    In the framework of a nonrelativistic potential quark model (NRPQM) for heavy quark system, we investigate the mass spectrum of the PP-wave tetraquark states of cccˉcˉcc\bar{c}\bar{c} and bbbˉbˉbb\bar{b}\bar{b}. The Hamiltonian contains a linear confinement potential and parameterized one-gluon-exchange potential which includes a Coulomb type potential and spin-dependent potentials. The full-heavy tetraquark system is solved by a harmonic oscillator expansion method. With the same parameters fixed by the charmonium and bottomonium spectra, we obtained the full spectra for the SS and PP-wave heavy tetraquark states. We find that the narrow structure around 6.9 GeV recently observed at LHCb in the di-J/ψJ/\psi invariant mass spectrum can be naturally explained by the PP-wave cccˉcˉcc\bar{c}\bar{c} states. Meanwhile, the observed broad structure around 6.2∼6.86.2\sim 6.8 GeV can be consistently explained by the SS-wave states around 6.5 GeV predicted in our previous work. Some contributions from those suppressed low-lying PP-wave states around 6.7 GeV are also possible. Other decay channels are implied in such a scenario and they can be investigated by future experimental analysis. Considering the large discovery potential at LHCb, we give our predictions of the PP-wave bbbˉbˉbb\bar{b}\bar{b} states which can be searched for in the future.Comment: 5 page, 1 figur
    • …
    corecore