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ABSTRACT
In this paper, we investigate the well-posedness of the real fractional
Ginzburg–Landau equation in several different function spaces, which have
been used to deal with the Burgers’ equation, the semilinear heat equation,
the Navier–Stokes equations, etc. The long time asymptotic behavior of the
nonnegative global solutions is also studied in details.
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1. Introduction

In this paper, we are interested in the Cauchy problem for the Ginzburg–Landau equation with
fractional Laplacian {

ut = −�2αu + u − |u|2σu, in Rn × (0,+∞),
u(x, 0) = u0(x), in Rn,

(1.1)

where α ∈ (0, 1], σ ≥ 1
2 , and the square root of the Laplacian,� = (−�)

1
2 , is a pseudo-differential

operator defined by the Fourier transform F(�2αf )(ξ) = |ξ |2αF(f )(ξ), which means that, unlike
the conventional differential operators, the operator�2α with α ∈ (0, 1) is nonlocal, that is,�2αu(x)
depends not just on u(y) for y near x, but on u(y) for all y. Equation (1.1) with α = 1 is the classical
Ginzburg–Landau equation

ut = �u + u − |u|2σu,
which was intensively studied in the past decades; refer to [1–3] and references therein.

In the current study, we pay our special attention to the fractional case α ∈ (0, 1). The fractional
partial differential equations, which appear in mathematical physics such as chaotic dynamics [4],
material science [5], cosmic-rays propagation [6], and long-range dissipation [7], now attract the
growing interests of many researchers. They are not just another way of presenting old stories, but a
powerful frameworkwhich is of use formany complex systems. Inparticular, the fractionalGinzburg–
Landau equations can capture some long-range interactions of a system which can not be captured
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by traditional integer order differential equations; refer, e.g. to [8–13] for a discussion of these issues.
As far as (1.1) is considered, it is the real form of the complex fractional Ginzburg–Landau equation

ut = −(1 + ai)�2αu + u − (1 + bi)|u|2σu, (1.2)

which plays a fundamental role in the understanding of the dynamical processes in continuums with
fractal dispersion and the media with fractal mass dimension [9–11,14–16].

For Equation (1.1), Tarasov [17] considered the case n = 1 and studied the Psi-series solutions,
the leading order behavior of solution of arbitrary singularity as well as their resonance structure.
For the case σ = 1 and n ≥ 1, Li and Xia [18,19] obtained the well-posedness result for initial data
in Lp orWsα, 32 . Recently, Pu and Guo [15] studied the global existence of weak and strong solutions
to Equation (1.2) posed on the periodic box. In this paper, we will investigate the well-posedness of
Equation (1.1) with general σ and initial data in several different function spaces, which have been
used to deal with the Burgers’s equation, the semilinear heat equation, the Navier–Stokes equations
etc.

We now state the function spaces, which will be used in the next sections. The first one is the
standard Lp space. The local existence and uniqueness of mild solution for the initial value u0 ∈ Lp
will be established.

The second one is the homogeneous Sobolev space Ẇs,p, which consists of all θ such that

(−�)
s
2 θ ∈ Lq, s ∈ R, 1 ≤ q < ∞,

with the standard norm given by

‖θ‖Ẇs,q := ‖(−�)
s
2 θ‖Lq .

We are interested in the case of non-positive index s ≤ 0. More precisely, we will show the well-
posedness of the initial-value problem (1.1) with initial data u0 ∈ Ẇr,p when r and p satisfy

1 < p < ∞,
α

(2σ + 1)σ
<
n
p

≤ α

σ
, and r := n

p
− α

σ
≤ 0.

Here, to detect the index r, the dimensional analysis might be employed. Indeed, we only need
to notice that if u(x, t) is a solution to (1.1) without the zero-order term u, then for any λ > 0,
uλ := λ

α
σ u(λx, λ2αt) solves the same problem and

‖uλ(·, t)‖Ẇr,p = λ
r−( np− α

σ
)‖u(·, λ2αt)‖Ẇr,p .

The third one is a weighted Banach space. We will show that if the initial data u0 ∈ Ws,p, which is
the inhomogeneous Sobolev space consisting of all θ such that

‖θ‖Ws,p ≡ ‖(1 + |ξ |2) s2 θ̂ (ξ )‖Lp < ∞,

then Equation (1.1) admits a solution u ∈ BCs
(
(0,T],Wr,p) with s ≤ r, s, r ∈ R,T > 0, where the

space BCs
(
(0,T],Wr,p) denotes the class of all functions

θ ∈ C([0,T],Ws,p) ∩ C((0,T],Wr,p)

with the norm given by

‖θ‖BCs((0,T),Wr,p) := sup
t∈[0,T]

∥∥∥∥(
1 + |ξ |2)s (1 + |ξ |2t 1

2α

)r−s
θ̂ (ξ , t)

∥∥∥∥
Lp

< ∞. (1.3)
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Here θ̂ denotes the Fourier transform of θ . More precisely, we will prove that if u0 ∈ Wsα,1+ 1
2σ with

s satisfying s > n
(2σ+1)α − 1

σ
, then the initial-value problem of (1.1) is locally well-posed and the

solution u ∈ BCsα((0,T]),Wrα,1+ 1
2σ ) for some T > 0 and all r ≥ s.

To establish the above well-posedness results, we will use a basic transform v = e−tu to transfer
(1.1) into a nonlocal parabolic equation with absorption{

vt = −�2αv − e2σ t |v|2σ v, in Rn × (0,+∞),
v(x, 0) = v0(x), in Rn,

(1.4)

where v0(x) = u0(x). Then we analyze the boundedness of the solutions to the corresponding linear
equation {

wt = −�2αw, in Rn × (0,+∞),
w(x, 0) = v0(x), in Rn,

(1.5)

and estimate the nonlinear term in the above function spaces. Such an analysis is based on some basic
properties the convolution operator e−�2α t with kernel gα(x, t). The above results are also valid for
Tn.

At the end of this paper, we will also investigate the long time asymptotic behavior of the
nonnegative global solutions to Equation (1.4) with initial data v0 ∈ L1(Rn) in the case 0 < σ < α

n−2α .
The rest of this paper is organized as follows. In Section 2, we describe some definitions and

recall some preliminary results about the fractional calculus. In Section 3, we will show the local
well-posedness of Equation (1.4) with v0 ∈ Lp, Ẇr,p and Wsα,1+ 1

2σ . Finally, in Section 4, we study
the long-time asymptotic behavior of the nonnegative global solutions.

2. Preliminaries

In this section, we give some preliminaries, which is needed to prove our well-poseness result. We
first consider the linear Equation (1.5) and investigate its explicit solution

w(x, t) = e−�2α tv0(x) = gα(·, t) ∗ v0( · )(x),

where e−�2α t is a convolution operator with its kernel gα(x, t) being defined through the Fourier
transform

ĝα(ξ , t) = e−|ξ |2α t .

Whenα = 1
2 andα = 1, the kernel gα(x, t) is the classical Poisson kernel andheat kernel, respectively.

Whenα ∈ (0, 1], gα(x, t) is a nonnegative andnon-increasing radial function, and satisfies the dilation
relation

gα(x, t) = t−
n
2α gα(xt−

1
2α , 1).

Furthermore, both gα and ∇gα are bounded linear operators from Lp to Lq. That is, the following
lemma holds.
Lemma 2.1: Let 1 ≤ p ≤ q ≤ ∞. For any t > 0 and v0 ∈ Lp(Rn), we have

‖gα(·, t) ∗ v0‖Lq(Rn) ≤ Ct−
n
2α (

1
p− 1

q )‖v0‖Lp(Rn)

and
‖∇gα(·, t) ∗ v0‖Lq(Rn) ≤ Ct−(

1
2α+ n

2α (
1
p− 1

q ))‖v0‖Lp(Rn),

where C is a constant depending on α, p, and q only.



Proof: The proof can be completed by following the idea of Wu [20], where the author proved the
same conclusion for n = 2.

Next, we define the spaces of weighted continuous functions in time, which were introduced by
Kato–Ponce [21] and others in solving the Navier–Stokes equations and then employed by Wu [22]
in dealing with semilinear heat equation.
Definition 2.1: Suppose T > 0 and α ≥ 0 are real numbers. The space Cα,s,q is defined as

Cα,s,q = {
f ∈ C((0,T), Ẇs,q); ‖f ‖Cα,s,q < ∞}

,

where the norm is given by

‖f ‖Cα,s,q = sup
t∈[0,T]

tα‖f ‖Ẇs,q .

Then Ċα,s,q is a subspace of Cα,s,q defined by

Ċα,s,q =
{
f ∈ Cα,s,q, lim

t→0
tα‖f ‖Ẇs,q = 0

}
.

When α = 0, we use C̄s,q to denote BC([0,T), Ẇs,p).
From Lemma 2.1, we have the following strongly continuous semigroup property.

Lemma 2.2 [18,19]: For any T > 0, we denote by w(x, t) := gα(·, t) ∗ v0(x) in Rn × [0,T].
(i) Let v0 ∈ Lp(Rn), (1 ≤ p < ∞), then w ∈ C([0,T]; Lp(Rn)) and limt→0 ‖w(x, t) −

v0(x)‖Lp(Rn) = 0.
(ii) Let v0(x) ∈ C(Rn)

⋂
L∞(Rn), then w ∈ C([0,T]; L∞(Rn)) and limt→0 ‖w(x, t) −

v0(x)‖L∞(Rn) = 0.
(iii) Let v0 ∈ Ẇs,q(Rn), (s ∈ R, q ∈ [1,∞)), then w ∈ C((0,T); Ẇs,q(Rn)) and limt→0 ‖w(x, t)−

v0(x)‖Ẇs,q(Rn) = 0.
(iv) Assume that s1 ≤ s2, q1 ≤ q2, and λ2 = 1

2α
(
s2 − s1 + n

q1 − n
q2

)
, then v0 → w is a continuous

mapping from Ẇs1,q1 into Ċλ2,s2,q2 . When λ2 = 0, Ċλ2,s2,q2 should be replaced by C̄s2,q2 .

We now turn to consider the following nonlinear problem{
vt = Lv + N(v),
v(x, 0) = v0(x),

(2.1)

where L is the infinitesimal generator of a strongly continuous semigroup S(t) on Banach space X. If
v(x, t) is a classical or strong solution of (2.1), then v(x, t) satisfies the integral equation

v(x, t) = S(t)v0(x)+
∫ t

0
S(t − τ)N(v(x, τ))dτ. (2.2)

It is clear that a solution given by (2.2) is weaker than the classical solution. Thus, we introduce the
following definition.

Definition 2.2 [23]: Let X be a Banach space, v0 ∈ X and N ∈ L1(0,T;X), then a function v ∈
C([0,T];X) given by (2.2) is called a mild solution of problem (2.1) on [0,T].

The next lemma shows the local existence of mild solution to nonlinear problem (2.1).

2548 X.-M. GU ET AL.



Lemma 2.3 [2]: Let X, Y and Z be Banach spaces such that the semigroup S(t) is strongly continuous
when acting on X, and S(t)ω ∈ Y for every ω ∈ X or Z. Furthermore, S(t) satisfies

‖S(t)ω‖Y ≤ Ct−β1‖ω‖X ∀ω ∈ X, and ‖S(t)ω‖Y ≤ Ct−β2‖ω‖Z ∀ω ∈ Z,

where the constants β1 and β2 satisfy

0 ≤ β2 < 1, 0 ≤ β1 <
1

2σ + 1
, and β2 + 2σβ1 < 1.

Let N be locally Lipschitz from Y to Z and N(0) = 0, that is,

‖N(v1)− N(v2)‖Z ≤ C
(‖v1‖2σY + ‖v2‖2σY

) ‖v1 − v2‖Y ∀ v1, v2 ∈ Y

for some C > 0. Then for every ρ > 0, there exists a T = T(ρ) > 0, such that for any v0 ∈ X,
‖v0‖X ≤ ρ, the nonlinear problem (2.1) admits a unique mild solution

v(x, t) ∈ C([0,T];X) ∩ C((0,T];Y).

Furthermore, the mapping v0 → v : X → C([0,T];X) is locally Lipschitz.
Then for the linear operator G defined by

Gg(t) :=
∫ t

0
e−�2α(t−τ)g(τ )dτ , (2.3)

we have the following continuous property.
Lemma 2.4: If q1, q2, λ1, λ2, s1, s2 satisfy

q1 ≤ q2, λ1 < 1, λ2 = λ1 − 1 + 1
2α

(
s2 − s1 + n

q1
− n
q2

)
, 0 ≤ s2 − s1 < 2α − n(

1
q1

− 1
q2
),

then G maps continuously from Ċλ1,s1,q1 to Ċλ2,s2,q2 .

Proof: The proof of this lemma is quite similar to that of Proposition 2.2 in [19]. We omit the
details.

3. Well-posedness

In this section, we study the well-posedness of Cauchy problem (1.4). We first consider the local
well-posedness in Lp and then show the local well-posedness in Wr,p. Next, the well-posedness in
Wsα,1+ 1

2σ will be proved.

3.1. Local well-posedness in Lp

In this subsection, we establish the local well-posedness of Cauchy problem (1.4) in Lp. We have the
following conclusion.
Theorem 3.1: Let v0 ∈ Lp(Rn) with nσ

α
< p < +∞, then there exists a T > 0 such that Cauchy

problem (1.4) possesses a unique mild solution

v(x, t) ∈ C
([0,T]; Lp(Rn)

) ∩ C
(
(0,T]; L(2σ+1)p(Rn)

)
.
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Furthermore, the mapping v0 → v is locally Lipschitz. The same conclusion holds if we instead Rn by
Tn.

Proof: We will use Lemma 2.3 to prove our conclusion. For this purpose, we take X = Z = Lp(Rn)
and Y = L(2σ+1)p(Rn). Then by setting Lv = −�2αv and N(v) = −e2σ t |v|2σ v, we can define the
semigroup S(t) by

S(t)v = gα(·, t) ∗ v(·, t).
By Lemma 2.2, we have that S(t) is a C0 semigroup on Lp(Rn). Moreover, if we take

β1 = β2 = nσ
pα(2σ + 1)

,

which satisfy
0 ≤ β2 < 1, 0 ≤ β1 <

1
2σ + 1

, and β2 + 2σβ1 < 1

by the assumption p > nσ
α
, then we have the estimate

‖gα(·, t) ∗ ω‖L(2σ+1)p(Rn) ≤ Ct−
n
2α

(
1
p− 1

(2σ+1)p

)
‖ω‖Lp(Rn) = Ct−β1‖ω‖Lp(Rn) = Ct−β2‖ω‖Lp(Rn)

by Lemma 2.1.
On the other hand, it follows from Young’s inequality, Hölder’s inequality and Minkowski’s

inequality [13] that

‖N(v1)− N(v2)‖Lp(Rn) ≤ Ce2σT
(∫

Rn
|v1 − v2|p

(|v1|2σ + |v2|2σ
)p dx) 1

p

≤ Ce2σT
(∫

Rn
|v1 − v2|(2σ+1)pdx

) 1
(2σ+1)p

×
(∫

Rn

(|v1|2σ + |v2|2σ
) (2σ+1)p

2σ dx
) 2σ
(2σ+1)p

≤ Ce2σT
(
‖v1‖2σL(2σ+1)p(Rn)

+ ‖v2‖2σL(2σ+1)p(Rn)

)
‖v1 − v2‖L(2σ+1)p(Rn).

Then we can use Lemma 2.3 to obtain the desired local well-posedness.
The case for Tn can be similarly dealt with.

3.2. Local well-posedness in Ẇr,p

In this subsection, we establish the well-posedness of Cauchy problem (1.4) in Ẇr,p with r ≤ 0. For
r = 0, in particular, we extend the result of the previous subsection to the case v0 ∈ Lp with p = nσ

α
.

Our proposed method is the use of integral equation and contraction mapping arguments, which
has been extensively used by Kato, Ponce and other researchers to prove the well-posedness of the
Navier–Stokes equations in various types of functional spaces [13,21,24,25]. The main result is stated
as follows.
Theorem 3.2: Let v0 ∈ Ẇr,p(Rn) with r and p satisfying

1 < p < ∞,
α

(2σ + 1)σ
<
n
p

≤ α

σ
, and r := n

p
− α

σ
≤ 0. (3.1)

Then there exists T = T(v0) > 0 such that the Cauchy problem (1.4) admits a unique solution v
satisfying

v ∈ YT ≡
(
∩p≤q<∞C̄ n

q− α
σ
,q

)
∩

(
∩p≤q<∞ ∩s> n

q− α
σ
Ċ s− n

q + α
σ

2α ,s,q

)
. (3.2)
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In particular, (3.2) implies that

v ∈ BC
([0,T), Ẇr,p) ∩ (∩s>rC((0,T), Ẇs,p)

)
.

Moreover, the mapping v0 → v is locally Lipschitz. The same conclusion holds if we instead Rn by Tn.
Remark 3.1: It follows from the proof of the theorem that T = ∞ if ‖v0‖Ẇr,p is sufficiently small.
Also, the homogeneous spaces Ẇs,q can be replaced by inhomogeneous spacesWs,q.
Proof of Theorem 3.2: We first rewrite (1.4) in the integral form

v(x, t) = S(t)v0 + G
(
e2σ t |v|2σ v) ≡ e−�2α tv0 +

∫ t

0
e−�2α(t−τ) (e2σ t |v|2σ v) (τ )dτ

and seek a solution v for this integral equation. For this purpose, we divide the assumption r ≤ 0
into two cases: r < 0 and r = 0.

For the case r < 0, we define

X = C̄r,p ∩ Ċ− r
2α ,0,p

with norm for v ∈ X given by

‖v‖X = ‖v‖C0,r,p + ‖v‖C− r
2α ,0,p

and the completemetric spaceXR to be the closed ball inX of radiusR. Thenwe consider the operator
A : XR → X defined by

A(v, v0)(t) = S(t)v0 + G
(
e2σ t |v|2σ v) (t), 0 ≤ t < T .

By using Lemma 2.2 with

s1 = r, s2 = 0, q1 = q2 = p, λ2 = − r
2α

,

we find that S(t)v0 ∈ XR if T > 0 is small enough. Then we estimate G. Noticing that the restrictions
on p and in r in (3.1), we can use Lemma 2.4 with

q1 = p
2σ + 1

, q2 = p, λ1 = − (2σ + 1)r
2α

, λ2 = l
2σ + 1

, s1 = 0, s2 = 2αl
2σ + 1

+ r,

to obtain∥∥G (
e2σ t |v|2σ v)∥∥C l

2σ+1 ,
2αl

2σ+1+r,p
≤ Ce2σT

∥∥|v|2σ v∥∥C− 2σ+1
2α r,0, p

2σ+1

≤ Ce2σT‖v‖2σ+1
C− r

2α ,0,p
≤ Ce2σTR2σ+1

for all l ∈
[
0,− (2σ+1)2

2α r
)
. In particular, we can take l = 0 and l = − 2σ+1

2α r ∈
[
0,− (2σ+1)2

2α r
)
to

deduce that ∥∥G (
e2σ t |v|2σ v) (t)∥∥X ≤ Ce2σTR2σ+1.

Next, we consider the contraction property. A basic computation yields

‖A(v, v0)− A(ṽ, v0)‖X ≤ ∥∥G (
e2σ t |v|2σ v) − G

(
e2σ t |ṽ|2σ v)∥∥X

≤ ∥∥G (
e2σ t |v − ṽ|2σ v)∥∥X + ∥∥G (

e2σ t |v − ṽ||ṽ|2σ )∥∥
X .
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Then by using Lemma 2.4 again, we have

‖A(v, v0)− A(ṽ, v0)‖X ≤ Ce2σT
∥∥|v − ṽ|2σ v∥∥C− 2σ+1

2α r,0, p
2σ+1

+ Ce2σT
∥∥|v − ṽ||ṽ|2σ∥∥

C− 2σ+1
2α r,0, p

2σ+1

≤ Ce2σT‖v‖X‖v − ṽ‖2σX + Ce2σT‖v − ṽ‖X‖ṽ‖2σX .

Thus if we choose T to be small and R properly, then A(v, v0) maps XR into itself and is a
contraction map. Consequently, there exists a unique fixed point v ∈ XR satisfying v = A(v, v0). It is
easy to see from the above estimates that the uniqueness can be extended toXR′ , for all R′ by reducing
the time interval and thus to the whole X.

To show that v is in the class of YT defined by (3.2), we notice that

v(x, t) = A(v, v0)(t) ≡ S(t)v0 + G
(
e2σ t |v|2σ v) (t), t ∈ [0,T).

We apply Lemma 2.2 twice to S(t)v0 to have that

S(t)v0 ∈ C̄ n
q− α

σ
,q ∩ Ċ s− n

q + α
σ

2α ,s,q

for any p ≤ q < ∞ and s > n
q − α

σ
. On the other hand, to show

G
(
e2σ t |v|2σ v) ∈ C̄ n

q− α
σ
,q, ∀p ≤ q < ∞,

we use Lemma 2.4 with

q1 = p
2σ + 1

, q2 = q, s1 = 0, s2 = n
q

− α

σ
, λ1 = − (2σ + 1)r

2α
, λ2 = 0,

and then obtain∥∥G (
e2σ t |v|2σ v)∥∥C0, nq − α

σ ,q
≤ Ce2σT

∥∥|v|2σ v∥∥C− (2σ+1)
2α r,0, p

2σ+1

≤ Ce2σT‖v‖2σ+1
C− r

2α ,0,p
.

Again, by using Lemma 2.4 with

q1 = p
2σ + 1

, q2 = q, s1 = 0, s2 = s, λ1 = − (2σ + 1)r
2α

, λ2 =
s − n

q + α
σ

2α
,

we see that
G

(
e2σ t |v|2σ v) ∈ Ċ s− n

q + α
σ

2α ,s,q
, s >

n
q

− α

σ
, (3.3)

but s should also satisfy

s < 2α −
(
2σ + 1

p
n − n

q

)
,

which is required by Lemma 2.4. For large s, (3.3) can be shown by an induction process . The proof
of the local Lipschitz continuity is standard and thus we omitted the details here.

In the case r = 0, we define
X = C̄0,p ∩ Ċ 1

8σ ,0,
4p
3
,

with the norm
‖v‖X = ‖v‖C0,0,p + ‖v‖C 1

8σ ,0, 4p3
,
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and XR is again the closed ball in X of radius R. The proof is parallel to the case r < 0 except that we
need to use Lemma 2.4 to estimate∥∥G(e2σ t |v|2σ v)∥∥X = ∥∥G(e2σ t |v|2σ v)∥∥C0,0,p

+ ∥∥G(e2σ t |v|2σ v)∥∥C 1
8σ ,0, 4p3

≤ Ce2σT‖v2σ+1‖C 2σ+1
8σ ,0, 4p

3(2σ+1)
≤ Ce2σT‖v‖2σ+1

C 1
8σ ,0, 4p3

≤ Ce2σTR2σ+1.

The previous proof also holds for the case Tn. This completes the proof of Theorem 3.2. �

3.3. Well-posedness inWsα,1+ 1
2σ

In this subsection, we construct a new working space BCs((0,T]),Wr,p) (refer to (1.3)) to prove the
well-posedness of (1.4). Such a space with α = 1 has been used to solve the nonlinear Burgers’
equations in [26]. We have the following local well-posedness result.
Theorem 3.3: Assume v0 ∈ Wsα,1+ 1

2σ with s and α satisfying

s > − 2
2σ + 1

and s >
n

(2σ + 1)α
− 1
σ
.

Then for some T = T(v0) > 0, there is a unique solution v(x, t) to Cauchy problem (1.4) on the time
interval [0,T] satisfying

v ∈ BCsα

(
(0,T],Wrα,1+ 1

2σ

)
for any s ≤ r with r ≥ 0. Moreover, the mapping v0 → v : Wsα,1+ 1

2σ → BCsα
(
(0,T),Wrα,1+ 1

2σ
)
is

locally Lipschitz.
The proof of this theorem is again based on the contraction mapping principle. Recall that we can

rewrite (1.4) in the integral form

v(x, t) = S(t)v0 + G
(
e2σ t |v|2σ v) ≡ e−�2α tv0 +

∫ t

0
e−�2α(t−τ) (e2σ t |v|2σ v) (τ )dτ.

Thenweneed to estimate the operators S andG onBCsα

(
[0,T],Wrα,1+ 1

2σ

)
.We first give the estimate

for S.
Proposition 3.1: Let T > 0, s ∈ R and v0 ∈ Wsα,1+ 1

2σ , then for all r ≥ s, we have S(t)v0 ∈
BCsα

(
(0,T),Wrα,1+ 1

2σ

)
and

‖S(t)v0‖
BCsα

(
(0,T],Wrα,1+ 1

2σ

) ≤ C�‖v0‖
BCsα

(
(0,T],Wsα,1+ 1

2σ

)

where C� =
∥∥∥(1 + |ξ |2) r−s

2 exp (− |ξ |2)
∥∥∥
L∞ is constant.

Proof: The proof involves merely the definition of ‖v‖
BCsα([0,T],Wrα,1+ 1

2σ )
and is exactly similar to the

case α = 1 in [26]. We omit the details here.

To estimate the operatorG, we need the following lemma, whose proof is similar to that of Lemma
2 in [20].
Lemma 3.1: Let γ ≥ 0 be a real number. If 1 ≤ i ≤ m and 1 < pi < ∞ satisfy

1
p1

+ 2
p2

+ 3
p3

+ · · · + 1
pm

= m − 1,
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then for any gi ∈ Wγ ,pi we have

‖ω(ξa)γ ̂g1g2 · · · gm(ξ)‖L∞ ≤ C‖ω(ξa)γ ĝ1(ξ)‖Lp1 · · · ‖ω(ξa)γ ĝm(ξ)‖Lpm

where C is a constant and ω(ξ) = (
1 + |ξ |2) 1

2 .
Now we can estimate the operator G as follows.

Proposition 3.2: Let 0 < T ≤ 1 and s > σn
(2σ+1)α − 1

σ
. Assume that r ≥ 0 and v ∈ BCsα((0,T),

Wrα,1+ 1
2σ ). Then for any q satisfying

s ≤ q < r + 2 − 2σn
(2σ + 1)α

,

the function G
(
e2σ t |v|2σ v) ∈ BCsα

(
(0,T),Wqα,1+ 1

2σ

)
and

∥∥G (
e2σ t |v|2σ v)∥∥

BCsα

(
(0,T),Wqα,1+ 1

2σ

) ≤ CTσ s+1− σn
(2σ+1)α ‖v‖2σ+1

BCsα

(
(0,T),Wrα,1+ 1

2σ

),

where C is constant. Moreover, we have

lim
t→0

∥∥G (
e2σ t |u|2σ+1v

)∥∥
BCsα

(
(0,T),Wqα,1+ 1

2σ

) = 0.

Proof: We first estimate ‖G(e2σ t |v|2σ v)‖
BCsα((0,T),Wqα,1+ 1

2σ )
. It is only necessary to prove for the case

r ≤ q ≤ r + 2 − 2σn
(2σ+1)α since the norm is a nondecreasing function of q. It is easy to check that for

0 < T ≤ 1, − 2
2σ+1 ≤ s ≤ 0 ≤ r,

t
|s|
2α ≤ ω(s)ω(ξ t

1
2α )−s ≤ |ξ |s + t

|s|
2α

and it then follows that ‖v‖
BCsα((0,T),Wrα,1+ 1

2σ )
is bounded by

sup
0<t≤T

t
|s|
2

∥∥∥∥∫ t

0
ω(ξ t

1
2α )e−|ξ |2α(t−τ) |̂v|2σ v(ξ , t)dτ

∥∥∥∥
L1+

1
2σ

≤ ∥∥G(e2σ t |v|2σ v)∥∥
BCsα

(
(0,T),Wqα,1+ 1

2σ

)

≤ e2σT sup
0<t≤T

t
|s|
2

∥∥∥∥∫ t

0
ω(ξ t

1
2α )qαe−|ξ |2α(t−τ) |̂v|2σ v(ξ , t)dτ

∥∥∥∥
L1+

1
2σ

+ e2σT sup
0<t≤T

∥∥∥∥∫ t

0
|ξ |sω(ξ t 1

2α )qαe−|ξ |2α(t−τ) |̂v|2σ v(ξ , t)dτ
∥∥∥∥
L1+

1
2σ

:= I + II.

We first estimate I . For all ξ ∈ Rn and 0 ≤ τ ≤ t, it is clear that

ω(ξ t
1
2α ) ≤ Cω(ξ(t − τ)

1
2α )ω(ξ t

1
2α ).
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Therefore, we have

I ≤ e2σTt
|s|
2

∫ t

0

∥∥∥ω(ξ t 1
2α )(q−r)αω(ξ(t − τ)

1
2α )rαe−|ξ |2α(t−τ)

∥∥∥
L1+

1
2σ

∥∥∥ω(ξτ 1
2α )rα |̂v|2σ v(ξ , t)

∥∥∥
L∞ dτ

≤ Ce2σTt
|s|
2 ‖v‖

BCsα((0,T),Wrα,1+ 1
2σ )

∫ t

0

∥∥∥ω(ξ t 1
2α )(q−r)αω(ξ(τ )

1
2α )rαe−|ξ |2ατ

∥∥∥
L1+

1
2σ

(t − τ)
2σ+1
2 |s| dτ

≤ Ce2σTt−|s|σ+1− σn
(2σ+1)α ‖v‖2σ+1

BCsα((0,T),Wrα,1+ 1
2σ )

∫ 1

0

∥∥∥ω(ξθ− 1
2α )(q−r)αω(ξ)rαe−|ξ |2α

∥∥∥
L1+

1
2σ

(1 − θ)
2σ+1
2 |s|θ

σn
(2σ+1)α

dθ.

It shows that ∫ 1

0

∥∥∥ω(ξθ− 1
2α )(q−r)αω(ξ)rαe−|ξ |2α

∥∥∥
L1+

1
2σ

(1 − θ)
2σ+1
2 |s|θ

σn
(2σ+1)α

dθ ≤ C

for some C > 0. Indeed, since 0 ≤ q − r < 2 − 2σn
(2σ+1)α and thus 0 ≤ q−r

2 ≤ 1, we can deduce the
desired result by

ω(ξθ− 1
2 )q−r = (

1 + |ξ |2θ−1) q−r
2 ≤ 1 + |ξ |q−rθ− q−r

2

and the fact for a > 0, b > 0 the Beta function

B(a, b) =
∫ 1

0
(1 − x)a−1xb−1dx

is finite. The term II can be estimated in a quite similar way and the final result is the same as that of
I apart from that the constant C may be different.

We now turn to prove Theorem 3.3.
Proof of Theorem 3.3: Let r ≥ 0 be any real number, XT = BCsα((0,T),Wrα,1+ 1

2σ ) and XT ,R be the
closed ball centered at zero of radius R, where T and R are yet to be determined. Define the nonlinear
map� on XT ,R:

�(v) = S(t)v0 + G(e2σ t |v|2σ v).
By using Propositions 3.1 and 3.2, we have

‖�(v)‖XT ≤ C�‖v0‖Wsα,1+ 1
2σ

+ CTσ s+1− σn
(2σ+1)α ‖v‖2σ+1

XT
.

For v, ṽ ∈ XT ,R, by similar procedure as proof of Proposition 3.2, we have

‖�(v)−�(ṽ)‖XT ≤ CTσ s+1− σn
(2σ+1)α

∥∥|v|2σ + |ṽ|2σ∥∥
XT

‖v − ṽ‖XT

It is not hard to check that�mapsXT ,R intoXT ,R and is a contractionmap for some properly-chosen
T and R. Thus there is a unique fixed point v = �(v) in XT ,R. It is clear that by reducing the time
interval (0,T), we can extend the existence and uniqueness to XT ,R′ for any R′ and thus to the whole
space of XT . The Lipschitz continuity is easily obtain by using the fact that map is a contraction map
. This finishes the proof of this theorem. �

4. Asymptotic analysis

In this section, we deal with the decay of the ‘mass’. Note that for any nonnegative initial data
v0 ∈ L1(Rn), we have a nonnegative global L1-solution v to (1.4) satisfying

v ∈ L∞ ([0,∞), L1(Rn)
)

and e2σ tv2σ+1 ∈ L1
(
Rn × (0,∞)

)
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(see [27]). Then integrating Equation (1.4) with respect to x and t, we have

M(t) =
∫

Rn
v(x, t)dx =

∫
Rn

v0(x, t)dx −
∫ t

0

∫
Rn

e2σ tv(x, τ)2σ+1dxdτ (4.1)

We will show that in the remaining rang of σ , the massM(t) converges to zero and this phenomena
can be interpreted as the domination of nonlinear effects in the large time asymptotic of solutions
to (1.4). Note here that the mass M(t) = ∫

Rn v(x, t)dx of every solution to the linear equation
vt +�2αv = 0 is constant in time.
Theorem 4.1: Assume that v = v(x, t) is a non-negative solution of problem (1.4)with 0 < σ < α

n−2α .
Then limt→∞ M(t) = 0.

Proof: Wewill adapt the so-called rescaled test functionmethod used in [28] to prove our conclusion.
Let us define the function ϕ(x, t) = ϕl1(x)ϕ

l
2(t), where

l = 4σ + 1
2σ

, ϕ1(x) = ψ

( |x|
R

)
, ϕ2(t) = ψ

(
t

R2α

)
with R > 1. Here ψ is a smooth non-increasing function on [0,∞) such that

ψ(r) =
{
1 if 0 ≤ r ≤ 1,
0 if r ≥ 2.

In the following, we denote by�1and�2 the supports of ϕ1 and ϕ2, respectively:

�1 = {
x ∈ Rn : |x| ≤ 2R

}
, �2 = {

t ∈ [0,∞) : t ≤ 2R2α} .
Now, we multiply Equation (1.4)1 by ϕ(x, t) and integrate with respect to x and t to obtain∫

�1

v0(x)ϕ(x, 0)dx −
∫
�2

∫
�1

e2σ tv2σ+1(x, t)ϕ(x, t)dxdt

=
∫
�2

∫
�1

v(x, t)ϕl2(t)�
2αϕl1(x)dxdt −

∫
�2

∫
�1

v(x, t)ϕl1(x)∂tϕ
l
2(t)dxdt

≤ l
∫
�2

∫
�1

v(x, t)ϕl2(t)ϕ
l−1
1 (x)�2αϕ1(x)dxdt − l

∫
�2

∫
�1

v(x, t)ϕl1(x)ϕ
l−1
2 (t)∂tϕ2(t)dxdt.

(4.2)

Here,wehaveused the inequality�2αϕl1 ≤ lϕl−1
1 �2αϕ1,which is valid for allα ∈ (0, 1], l ≥ 1, and any

sufficiently regular, non-negative, decaying at infinity function ϕ1 (see[29,30] for the corresponding
proof).

By the ε-Young inequality ab ≤ εa2σ+1 + C(ε)bl−1 with 1
2σ+1 + 1

l−1 = 1 and ε > 0, we deduce
from (4.2) that ∫

�1

v0(x)ϕ(x, 0)dx − (1 + 2lε)
∫
�2

∫
�1

e2σ tv2σ+1(x, t)ϕ(x, t)dxdt

≤ C(ε)l
{ ∫

�2

∫
�1

e−2σ t l−1
2σ+1 ϕ1(x)ϕl2(t)|�2αϕ1|l−1dxdt

+
∫
�2

∫
�1

e−2σ t l−1
2σ+1 ϕl1ϕ2|∂tϕ2|l−1dxdt

}
. (4.3)
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Recall now that the functions ϕ1 and ϕ2 depend on R > 0. Hence changing the variables ξ = R−1x
and τ = R−2αt, we easily obtain from (4.3) the following estimate∫

�1

v0(x)ϕ(x, 0)dx − (1 + 2lε)
∫
�2

∫
�1

e2σ tv2σ+1(x, t)ϕ(x, t)dxdt ≤ CRn−2α(l−1), (4.4)

where the constant C is independent of R.
Note that σ < α

n−2α if and only if n − 2α(l − 1) < 0. Computing the limit R → ∞ in (4.4) and
using the Lebesgue dominated convergence theorem, we obtain

lim
t→∞M(t) =

∫
Rn

v0(x)dx −
∫ ∞

0

∫
Rn

e2σ tv2σ+1(x, t)dxdt ≤ 2lε
∫ ∞

0

∫
Rn

e2σ tv2σ+1(x, t)dxdt.

(4.5)
Since v ∈ e2σ tv2σ+1 ∈ L1

(
Rn × (0,∞)

)
and ε > 0 can be chosen arbitrary small, we immediately

obtain that limt→∞ M(t) = 0.
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