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Phase transition of AdS black holes in Lorentz breaking massive gravity has been studied in the framework of holography. We find
that there is a first-order phase transition (FPT) and second-order phase transition (SPT) both in Bekenstein-Hawking entropy-
(BHE-) temperature plane and in holographic entanglement entropy- (HEE-) temperature plane. Furthermore, for the FPT, the
equal area law is checked and for the SPT, the critical exponent of the heat capacity is also computed. Our results confirm that the
phase structure of HEE is similar to that of BHE in Lorentz breaking massive gravity, which implies that HEE and BHE have some
potential underlying relationship.

1. Introduction

The study of HEE and quantum phase transitions of black
holes has attracted a lot of interest in recent years. On one
hand, HEE can be used as a perfect probe to study quantum
information science [1–3], strongly correlated quantum sys-
tems [4–13], and Many-Body Systems [14, 15]. On the other
hand, investigation on HEE of black holes may shed some
light on understanding the nature of BHE [16, 17].

Nearly ten years ago, a holographic derivation of the HEE
in conformal quantum field theories was proposed by Ryu
and Takayanagi using the famous AdS/CFT correspondence
[18, 19]. Recently the HEE has been used as a probe to
investigate the phase structure of the Reissner-Nordstrom
AdS black hole [20]. The results showed that there is a
Van der Waals-like (VDW) phase transition at the same
critical temperature in both the fixed charge ensemble and
chemical potential ensemble in the HEE-temperature plane.
They also found that the SPT occurs for the HEE at the
same critical point as the BHE with nearly the same critical
exponent. This work was soon generalized to the extended
phase space where the cosmological constant is considered

as a thermodynamical variable [21]. Very recently, the equal
area law of HEE was proved to hold for the FPT in the HEE-
temperature plane [22]. Based on [20], VDWphase transition
of HEE in various AdS black holes has been studied in [23–
32]. All of these works showed that the HEE undergoes the
same VDW phase transition as that of the BHE.

Massive gravity theories have attracted considerable
interest recently. One of these reasons is that these alternative
theories of gravity could explain the accelerated expansion
of the universe without dark energy. The graviton behaves
like a lattice excitation and exhibits a Drude peak in this
theory. Current experimental data from the observation of
gravitational waves by advanced LIGO require the graviton
mass to be smaller than the inverse period of orbital motion
of the binary system; that is, 𝑚𝑔 < 1.2 × 10−22 eV/c2
[33]. Another important reason for the interest in massive
gravity is that the possibility of the mass graviton could
help to understand the quantum gravity effect. The first
to introduce a mass to the graviton is in [34]. However
this primitive linear massive gravity theory contains the so-
called Boulware-Deser ghosts problem [35] that was solved
by a nonlinear massive gravity theory [36, 37], where the
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mass terms are obtained by introducing a reference metric.
Recently Vegh proposed a new reference metric to describe
a class of strongly interacting quantum field theories with
broken translational symmetry in the holographic framework
[38]. The recent progress in massive gravity can be found in
[39, 40].

Here, we consider AdS black holes in Lorentz breaking
massive gravity. In themassive gravity, the graviton acquires a
mass by Lorentz symmetry breaking, which is very similar to
the Higgs mechanism. A review of Lorentz-violating massive
gravity theory can be found in [41, 42]. In this paper, we focus
on the study of the VDW phase transition of AdS black holes
in Lorentz breakingmassive gravity using the HEE.Themain
motivation of this paper is to explore whether the BHE phase
transition can also be described by HEE in Lorentz breaking
massive gravity. Firstly, we would like to extend proposals
in [20] to study VDW phase transitions in AdS black hole
with a spherical horizon in Lorentz-violating massive gravity
with the HEE as a probe. What is more, we also would like
to checkMaxwell’s equal area law and critical exponent of the
heat capacity, which are two characteristic quantities in VDW
phase transition.

The organization of this paper is as follows. In the
next section, we shall provide a brief review of the black
hole solution in Lorentz breaking massive gravity firstly.
Then we will study the VDW phase transitions and critical
phenomena for the AdS black hole in the BHE-temperature
plane. In Section 3, wemainly concentrate on theVDWphase
transition and critical phenomena in the framework of HEE.
The last section is devoted to our discussions and conclusions.

2. Phase Transition and Critical
Phenomena of AdS Black Holes in Lorentz
Breaking Massive Gravity

2.1. Review of AdS Black Holes in Lorentz Breaking Massive
Gravity. The four-dimensional Lorentz breaking massive
gravity can be obtained by adding nonderivative coupling
scalar fields to the standard Einstein gravity theory. As a
matter field is considered, the theory can be described by the
following action [41, 42]:

𝑆 = ∫𝑑4𝑥√−𝑔 [−𝑀2Pl𝑅 + 𝐿𝑚 + ℓ4Ψ(𝑋,Π𝑖𝑗)] ; (1)

here the first two terms are the curvature and ordinarymatter
minimally coupled to gravity, respectively, and the third termΨ contains two functions 𝑋 and Π𝑖𝑗 which relate to the four
scalar fields, Ξ0 and Ξ𝑖 as

𝑋 = 𝜕𝜇Ξ0𝜕𝜇Ξ0ℓ4 ,
Π𝑖𝑗 = 𝜕𝜇Ξ𝑖𝜕𝜇Ξ𝑗ℓ4 − 𝜕𝜇Ξ𝑖𝜕𝜇Ξ0𝜕]Ξ𝑗𝜕]Ξ0ℓ8𝑋 .

(2)

When the four scalar fields get a space-time depending
vacuum expectation value, the system will break the Lorentz
symmetry. What is more, the action can also be taken as a

low-energy effective theory with the ultraviolet cutoff scale ℓ.
Here the scale parameter ℓ has the dimension of mass and is
in the order of √𝑚𝑔𝑀Pl, where 𝑚𝑔 and 𝑀Pl are the graviton
mass and the Plank mass, respectively.

The AdS black hole solutions can be obtained from the
above theory [43, 44]. The metric corresponding to the AdS
black holes is given by

𝑑𝑠2 = −𝑓 (𝑟) 𝑑𝑡2 + 𝑓 (𝑟)−1 𝑑𝑟2 + 𝑟2 (𝑑𝜑2 + sin2𝜑𝑑𝜙2) , (3)

with

𝑓 (𝑟) = 1 − 2𝑀𝑟 − 𝛾𝑄2𝑟𝜆 − Λ𝑟23 . (4)

Here, the four scalar fields, Ξ0 and Ξ𝑖, for this particular
solution are given by

Ξ0 = ℓ2 (𝑡 + 𝜂 (𝑟)) ,
Ξ𝑖 = ℓ2𝛼𝑥𝑖, (5)

in which

𝜂 (𝑟) = ±∫ 𝑑𝑟𝑓 (𝑟)
⋅ [[1 − 𝑓 (𝑟)(𝛾𝑄2𝜆 (𝜆 − 1)12𝑚2𝑔𝛼6 1𝑟𝜆+1 + 1)−1]]

1/2

,
(6)

in which the scalar charge 𝑄 is related to massive gravity
and the constant 𝛼 which is determined by the cosmological
constant Λ and the graviton mass 𝑚𝑔 with the relation Λ =2𝑚2𝑔(1 − 𝛼6). In this paper, we will set 𝛼 > 1 such thatΛ < 0 leading to Anti-de Sitter black holes. The constant 𝜆 is
a positive integration constant. When 𝜆 < 1, the ADM mass
of the black hole solution diverges. For 𝜆 > 1, the metric
approaches the Schwarzschild-AdS black holes with a finite
mass 𝑀 as 𝑟 → ∞. Thus we set 𝜆 > 1 in this paper. The
constant 𝛾 = ±1. When 𝛾 = 1, the black hole only has a
single horizon 𝑟ℎ, which is the root of the equation 𝑓(𝑟ℎ) = 0.
The function 𝑓(𝑟) for this case is given in Figure 1, which
is similar to the Schwarzschild-AdS black hole. For 𝛾 = −1,
the black hole is very similar to the Reissner-Nordstrom-AdS
black hole.The function𝑓(𝑟) for this case is given in Figure 2.
The black hole event horizon 𝑟ℎ is the largest root of the
equation 𝑓(𝑟ℎ) = 0.

At the event horizon, the Hawking temperature and BHE
can be written as

𝑇 = 14𝜋𝑓󸀠 (𝑟ℎ) = 14𝜋 ( 1𝑟ℎ − 𝑟ℎΛ + 𝛾 (𝜆 − 1)𝑄2𝑟𝜆+1
ℎ

) , (7)

𝑆 = 𝜋𝑟2ℎ. (8)

The chemical potential in this black hole is

Φ = −𝛾 𝑄𝑟𝜆−1
ℎ

. (9)
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Figure 1: The figure shows 𝑓(𝑟) versus 𝑟 for 𝛾 = 1 for varying 𝑄.
Here 𝜆 = 2.4, Λ = −3, and 𝑀 = 1.5.

Q = 1.8

Q = 1.2

Q = 0.5

Q = 0
−4

−2

2

4

f
(r
)

1.0 1.5 2.0 2.50.5
r

Figure 2: The figure shows 𝑓(𝑟) versus 𝑟 for 𝛾 = −1 for varying 𝑄.
Here 𝜆 = 2.4, Λ = −3, and 𝑀 = 1.5.
We can check the first law of the black hole, which is given by

𝑑𝑀 = 𝑇𝑑𝑆 + Φ𝑑𝑄. (10)

There have been some works to study the thermodynamics
and phase transitions of black holes in Lorentz breaking
massive gravity [45–48].

2.2. Van der Waals-Like Phase Transition of Bekenstein-
Hawking Entropy. In this subsection, we focus on the VDW
phase transition of BHE. Substituting (8) into (7) and elimi-
nating the parameter 𝑟ℎ, one can get the relation between the
Hawking temperature 𝑇 and BHE 𝑆 of the AdS black holes in
massive gravity as

𝑇
= 𝑆(1/2)(−𝜆−1) (𝛾𝜋𝜆/2+1 (𝜆 − 1)𝑄 − Λ𝑆𝜆/2+1 + 𝜋𝑆𝜆/2)4𝜋3/2 . (11)

This is the state equation of the AdS black hole thermody-
namics system in massive gravity. Using (11), we investigate
the phase diagram of the AdS black holes in massive gravity.
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Figure 3: The figure shows 𝑇 versus 𝑆 for 𝛾 = 1. Here 𝜆 = 2.4,Λ = −3, and 𝑄 = 0.3.
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Figure 4:The figure shows𝑇 versus 𝑆 for 𝛾 = −1 for varying𝑄. Here𝜆 = 2.4, Λ = −3. The top dashed curve is at 𝑄 = 0 and the rest have𝑄 = 0.6𝑄𝑐, 𝑄𝑐, 1.2𝑄𝑐, where 𝑄𝑐 = 0.12346.

The temperature𝑇 is plotted as a function of the BHE 𝑆 in
Figures 3 and 4 for 𝛾 = 1 and 𝛾 = −1, respectively. In Figure 3,
the temperature is plotted for 𝛾 = 1 where only one event
horizon exists.This behavior of temperature is very similar to
the behavior in the Schwarzschild-AdS black hole. That is to
say, there is a minimum temperature 𝑇min which divides the
thermodynamics systems into small and large black holes. It is
shown that, above theminimum temperature, small and large
black holes coexist. In fact, this behavior will break for there is
a first-order transition, which is similar to the Hawking-Page
thermodynamic transition in [49].

In Figure 4, the temperature is plotted for 𝛾 = −1 where
event horizon and inner horizon exist. Various values of 𝑄
are used to plot the relations between the temperature and
horizons. The top curve corresponds to 𝑄 = 0. The system
of this case is similar to the case 𝛾 = 1 described above.
When the scalar charge 𝑄 increases, the temperature has
two turning points. Further increasing of the scalar charge𝑄 makes these two turning points merge to one. It is shown
that there exists a critical point 𝑄𝑐. Above the critical point,
the curve does not have any turning points. Thus we find
that the phase structure is very similar to that of the Van der
Waals gas-fluid phase transition. It should be noted that we
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Figure 5: The figure shows the critical temperature 𝑇𝑐, the critical entropy 𝑆𝑐, and the critical charge 𝑄𝑐 versus 𝜆 for 𝛾 = −1. Here Λ = −3.
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Figure 6: The figure shows the critical temperature 𝑇𝑐, the critical entropy 𝑆𝑐, and the critical charge 𝑄𝑐 versus Λ for 𝛾 = −1. Here 𝜆 = 1.2.
mainly concentrate on this type of phase structure in this
paper. Furthermore using the definition of the specific heat
capacity 𝐶𝑄, that is,

𝐶𝑄 = 𝑇( 𝜕𝑆𝜕𝑇)
𝑄

, (12)

one can see that the specific heat capacity is divergent at the
critical point and it is obvious that this phase transition is a
SPT. At this critical point, the critical charge 𝑄𝑐 and critical
entropy 𝑆𝑐 can be obtained by the following equations:

(𝜕𝑇𝜕𝑆 )
𝑄𝑐 ,𝑆𝑐

= (𝜕2𝑇𝜕𝑆2 )
𝑄𝑐 ,𝑆𝑐

= 0. (13)

After some calculation and using (11), 𝑄𝑐, 𝑆𝑐, and the
corresponding 𝑇𝑐 can be also got as

𝑄𝑐 = −2 (−𝜆/ (𝜆 + 2) Λ)𝜆/2𝛾 (𝜆 + 2) (𝜆2 − 1) , (14)

𝑆𝑐 = − 𝜋𝜆(𝜆 + 2)Λ , (15)

𝑇𝑐 = 𝜆2𝜋 (𝜆 + 1)√−𝜆/ (𝜆 + 2) Λ . (16)

Obviously, these critical parameters depend only on the
internal parameters of the systems 𝜆 and Λ. One can also
see that 𝑇𝑐 and 𝑆𝑐 increase with 𝜆 and 𝑄𝑐 decreases with 𝜆 as
shown in Figure 5; 𝑆𝑐 and𝑄𝑐 increase withΛ and𝑇𝑐 decreases
with 𝜆 as shown in Figure 6. So the results show that the
parameter 𝜆 promotes the thermodynamic system to reach
the stable state.
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Figure 7: The figure shows 𝐹 versus 𝑇 for 𝛾 = −1. Here 𝜆 = 2.4,Λ = −3, and 𝑄 = 0.6𝑄𝑐.

For the FPT, we will also check whether Maxwell’s equal
area law holds in this thermodynamic system. As is known to
all, the first-order transition temperature 𝑇∗ plays a crucial
role for Maxwell’s equal area law. Thus in order to get 𝑇∗,
we first plot the curve about the free energy with respect
to the temperature 𝑇, where the free energy is defined by𝐹 = 𝑀 − 𝑇𝑆. The relation between 𝐹 with 𝑇 is plotted in
Figure 7. One can see that there is a swallowtail structure,
which corresponds to the unstable phase in Figure 8. The
nonsmoothness of the junction implies that the phase transi-
tion is a FPT. The critical temperature 𝑇∗ is apparently given
by the horizontal coordinate of the junction. From Figure 7,
we get 𝑇∗ = 0.2750. Substituting this temperature 𝑇∗ into
(11), one can obtain three values of the entropy, 𝑆1 = 0.1563,
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𝑆2 = 0.5277, and 𝑆3 = 1.394. With these values, we can now
check Maxwell’s equal area law

𝑇∗ (𝑆3 − 𝑆1) = ∫𝑆3
𝑆1

𝑇 (𝑆, 𝑄) 𝑑𝑆. (17)

After some calculation, we find that both the left and right
sides of (17) are equal to 0.3404 exactly.Thus, our results show
that Maxwell’s equal area law is satisfied in this background.

For the SPT, we will study the critical exponent associated
with the heat capacity definition in (12). Near the critical
point, expanding the temperature as the very small amount𝑆 − 𝑆𝑐, we find

𝑇 = 𝑇𝑐 + (𝜕𝑇𝜕𝑆 )
𝑄𝑐,𝑆𝑐

(𝑆 − 𝑆𝑐) + (𝜕2𝑇𝜕𝑆2 )
𝑄𝑐,𝑆𝑐

(𝑆 − 𝑆𝑐)2
+ (𝜕3𝑇𝜕𝑆3 )

𝑄𝑐 ,𝑆𝑐

(𝑆 − 𝑆𝑐)3 + 𝑜 (𝑆 − 𝑆𝑐)4 .
(18)

Using (13), the second and third terms vanish.Thenusing (11),
(14), and (15), we get

𝑇 − 𝑇𝑐 = 𝜆16𝜋4 (−𝜆/ (𝜆 + 2) Λ)7/2 (𝑆 − 𝑆𝑐)3 . (19)

With the definition of the heat capacity (12), we further get𝐶𝑄 ∼ (𝑇 − 𝑇𝑐)−2/3. So one can find that the critical exponent
of the heat capacity is −2/3, which is the same as the one from
the mean field theory in Van der Waals gas-fluid system.

3. Van der Waals-Like Phase Transition
and Critical Phenomena of Holographic
Entanglement Entropy

In this section, our target is to explore whether the HEE has
the similar VDW phase structure and critical phenomena
as those of the BHE in massive gravity. For simplicity,
here we only consider the case 𝛾 = −1. Now we will
investigate whether there is VDW phase transition in the
HEE-temperature phase plane.

Firstly, we review some basic knowledge about HEE. For
detailed introduction of HEE, one can refer to [18, 19]. For a
given quantum field theory described by a density matrix 𝜌,
HEE for a region 𝐴 and its complement 𝐵 are

𝑆𝐴 = −𝑇𝑟𝐴 (𝜌𝐴 ln 𝜌𝐴) , (20)

where 𝜌𝐴 is the reduced density matrix. However, it is
usually not easy to get this quantity in quantum field theory.
Fortunately according to AdS/CFT correspondence, [18, 19]
propose a very simple geometric formula for calculating 𝑆𝐴
for static states with the area of a bulk minimal surface as 𝜕𝐴;
that is,

𝑆𝐴 = Area (𝛾𝐴)4 , (21)

where 𝛾𝐴 is the codimension-2 minimal surface according to
boundary condition 𝜕𝛾𝐴 = 𝜕𝐴.

Subsequently using definition (21), we will calculate the
HEE and study the corresponding phase transition. It is noted
that the space on the boundary is spherical in the AdS black
hole in massive gravity and the volume of the space is finite.
Thus in order to avoid the HEE to be affected by the surface
that wraps the event horizon, we will choose a small region as𝐴. More precisely, as done in [23, 25–27], we choose region𝐴
to be a spherical cap on the boundary given by 𝜑 ≤ 𝜑0. Here
the area can be written as

𝐴 = 2𝜋∫𝜑0
0

Θ(𝑟 (𝜑) , 𝜑) 𝑑𝜑,
Θ = 𝑟 sin𝜑√ (𝑟󸀠)2𝑓 (𝑟) + 𝑟2,

(22)

where 𝑟󸀠 = 𝑑𝑟/𝑑𝜑. Then according to the Euler-Lagrange
equation, one can get the equation of motion of 𝑟(𝜑); that is,

0 = 𝑟󸀠 (𝜑)2 [sin𝜑𝑟 (𝜑)2 𝑓󸀠 (𝑟) − 2 cos𝜑𝑟󸀠 (𝜑)]
− 2𝑟 (𝜑) 𝑓 (𝑟) [𝑟 (𝜑) (sin𝜑𝑟󸀠󸀠 (𝜑) + cos𝜑𝑟󸀠 (𝜑))
− 3 sin𝜑𝑟󸀠 (𝜑)2] + 4 sin𝜑𝑟 (𝜑)3 𝑓 (𝑟)2 .

(23)

After using the boundary conditions 𝑟󸀠(0) = 0, 𝑟(0) = 𝑟0, we
can get the numeric result of 𝑟(𝜑).

It is worth noting that the HEE should be regularized by
subtracting off the HEE in pure AdS, because the values of
the HEE in (21) are divergent at the boundary. Now let us
label the regularized HEE as 𝛿𝑆. Here we choose the size of
the boundary region to be 𝜑0 = 0.10, 0.16 and set the UV
cutoff in the dual field theory to be 𝑟(0.099) and 𝑟(0.159),
respectively. The numeric results are shown in Figures 9 and
10. One can see that, for a given scalar charge 𝑄, the relation
between the HEE and temperature is similar to that between
the BHE and temperature. That is to say, the AdS black holes
thermodynamic systemwith theHEE undergoes the FPT and
SPT one after another as the scalar charge𝑄 increases step by
step.
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Figure 9: The figure shows 𝑇 versus 𝛿𝑆 for 𝛾 = −1, 𝜑0 = 0.10. Here 𝜆 = 2.4, 𝑄 = 0.6𝑄𝑐, 𝑄𝑐, 1.2𝑄𝑐 from (a) to (c).
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Figure 10: The figure shows 𝑇 versus 𝛿𝑆 for 𝛾 = −1, 𝜑0 = 0.16. Here 𝜆 = 2.4, 𝑄 = 0.6𝑄𝑐, 𝑄𝑐, 1.2𝑄𝑐 from (a) to (c).

For the FPT of theHEE, we now check whetherMaxwell’s
equal area law is satisfied. Firstly, we get the interpolating
function of the temperature 𝑇(𝛿𝑆) using the data obtained
numerically. At the first-order phase transition point, we get
the smallest and largest roots for the equation 𝑇(𝛿𝑆) = 𝑇∗,
which are 𝛿𝑆1 = 8.06165, 𝛿𝑆3 = 8.06191 for 𝜑0 = 0.10 and𝛿𝑆1 = 7.07492, 𝛿𝑆3 = 7.07599 for 𝜑0 = 0.16. Then using these
values and the equal area law

𝑇∗ (𝛿𝑆3 − 𝛿𝑆1) = ∫𝛿𝑆3
𝛿𝑆1

𝑇 (𝛿𝑆) 𝑑𝑆, (24)

we find the left side equals 0.00007137, 0.00029425 and the
right side equals 0.00007135, 0.00029446 for 𝜑0 = 0.10, 0.16,
respectively. Obviously both the left and the right sides are
equal within our numerical accuracy and the relative errors
are less than 0.022%, 0.071 for 𝜑0 = 0.10, 0.16, respectively.

Now let us consider the critical exponent of the SPT in
the HEE-temperature phase plane. Here comparing with the
definition of specific heat capacity 𝐶𝑄 in (12), one can also
define a specific heat capacity for the HEE as

𝐶󸀠𝑄 = 𝑇(𝜕𝛿𝑆𝜕𝑇 )
𝑄

. (25)

Then providing a similar relation of the critical points that
in (13) is also working and using (25), we can get the critical
exponent of SPT of in the HEE-temperature phase. Here we
employ the logarithm of the quantities 𝑇 − 𝑇𝑐, 𝛿𝑆 − 𝛿𝑆𝑐. The

relation between log |𝑇 − 𝑇𝑐| and log |𝛿𝑆 − 𝛿𝑆𝑐| is plotted in
Figure 11.The analytical results of these straight lines can also
be fitted, which are for 𝜑0 = 0.10,

log 󵄨󵄨󵄨󵄨𝑇 − 𝑇𝑐󵄨󵄨󵄨󵄨 = 23.469 + 3.00654 log 󵄨󵄨󵄨󵄨𝛿𝑆 − 𝛿𝑆𝑐󵄨󵄨󵄨󵄨 , (26)

and for 𝜑0 = 0.16,
log 󵄨󵄨󵄨󵄨𝑇 − 𝑇𝑐󵄨󵄨󵄨󵄨 = 19.2089 + 3.00477 log 󵄨󵄨󵄨󵄨𝛿𝑆 − 𝛿𝑆𝑐󵄨󵄨󵄨󵄨 . (27)

The results show that the slopes are all around 3 and the
relative errors are less than 0.218%, 0.159% for 𝜑0 = 0.10,0.16, respectively, which are consistent with that of the BHE.
Then one can find that the critical exponent of the specific
heat capacity 𝐶󸀠𝑄 is also approximately −2/3. That is to say,
the HEE has the same SPT behavior as that of the BHE. Both
of them are consistent with the result in themean field theory
of VDW gas-fluid system.

4. Conclusions

In this paper, we have investigated the VDWphase transition
with the use of HEE as a probe. Firstly, we investigated the
phase diagrams of the BHE in the 𝑇-𝑆 phase plane and found
that the phase structure depends on the scalar charge 𝑄 and
the parameter 𝛾 of the AdS black holes in this massive gravity.
For the case that 𝛾 = 1 or 𝑄 = 0, we found that there
always exists the Hawking-Page-like phase transition in this
thermodynamic system, while for the case 𝛾 = −1, we found
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Figure 11: The figure shows log |𝑇 − 𝑇𝑐| versus log |𝛿𝑆 − 𝛿𝑆𝑐| for 𝛾 = −1. Here 𝜆 = 2.4, 𝑄 = 𝑄𝑐, where 𝜑0 = 0.10 in (a) and 𝜑0 = 0.16 in (b).

for the small scalar charge𝑄, there is always an unstable black
hole thermodynamic system interpolating between the small
stable black hole system and large stable black hole system.
The thermodynamic transition for the small hole to the large
hole is a first-order transition and Maxwell’s equal area law
is valid. As the scalar charge 𝑄 increases to the critical value𝑄𝑐 in this space-time, the unstable black hole merges into an
inflection point. We found there is a SPT at the critical point.
When the scalar charge is larger than the critical charge, the
black hole is stable always. That is to say, we found that there
exists the VDW gas-fluid phase transition in the 𝑇-𝑆 phase
plane of the AdS black hole in massive gravity.

The more interesting thing is that we found the HEE also
exhibits the VDW phase structure in the 𝑇-𝛿𝑆 plane when𝛾 = −1 and the scalar charge 𝑄 ̸= 0. In order to confirm
this result, we further showed that Maxwell’s equal area law is
satisfied and the critical exponent of the specific heat capacity
is consistent with that of the mean field theory of the VDW
gas-fluid system for the HEE system. These results show that
the phase structure of HEE is similar to that of BHE and the
HEE is really a good probe to the phase transition of AdS
black holes in Lorentz breaking massive gravity. This also
implies that HEE and BHE exhibit some potential underlying
relationship.
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