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Gravitational collapse of a shell of dust in noncommutative geometry is probed by the renormalized 
geodesic length, which is dual to probe the thermalization by the two-point correlation function in the 
dual conformal field theory. We find that the larger the noncommutative parameter is, the longer the 
thermalization time is, which implies that the large noncommutative parameter delays the thermalization 
process. We also investigate how the noncommutative parameter affects the thermalization velocity and 
thermalization acceleration.
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1. Introduction

Gravity in noncommutative geometry [1,2] and noncommuta-
tive field theory [3,4] has been investigated extensively in recent 
years. The reason for this prevailing phenomenon maybe arises 
from the fact that the singularities in general relativity and ul-
traviolet divergences in quantum field theory can be avoided in 
the noncommutative framework. Because in noncommutative ge-
ometry, coordinates in a manifold fail to commute in analogy to 
the conventional noncommutativity among conjugate variables in 
quantum mechanics, this leads to a natural cut off due to the po-
sition uncertainty.

To study the properties of gravity in the noncommutative ge-
ometry, it is important and necessary to find the black hole so-
lutions in this background. Because spacetime as a manifold of 
points breaks down at distance scale of the order of the Planck 
length, it was proposed that the point-like object should be re-
placed by a smeared object [5,6]. In this case, the description 
mathematically by a Dirac-delta function distribution is substituted 
by a Gaussian distribution of minimal width 

√
θ , where θ is the 

smallest fundamental unit of an observable area in the noncommu-
tative coordinates. The first noncommutative black hole solution 
was presented by Nicolini, Smailagic and Spallucci using the coor-
dinate coherent state method [7]. It was found that the curvature 
singularity of the black hole is removed. Moreover, their method is 
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consistent with Lorentz invariance, unitarity and UV finiteness of 
quantum field theory, which appears in the Weyl–Wigner–Moyal 
�-product approach. Until now, there are many investigations on 
the properties of the noncommutative black hole, such as thermo-
dynamic properties [8], quantized entropy and area of horizon [9], 
quantum tunneling radiation [10], gravitational collapse solution 
[11], strong gravitational lensing effect [12], and so on. Especially 
recently, Hawking–Page phase transition [13], holographic entan-
glement entropy [14], and holographic superconductors [15] have 
also been investigated as the noncommutative anti-de Sitter black
hole solution [16] is given.

In this paper, we intend to investigate the non-equilibrium ther-
malization process in noncommutative field theory from the view-
point of holography. Recent years, investigation on holographic 
thermalization has attracted more and more attentions of theo-
retical physicist. The main motivation maybe arises from a fact 
that the thermalization time of quark–gluon plasma produced in 
RHIC and LHC experiments predicted by the perturbation theory 
is longer than the experiment result [17]. In order to investigate 
the thermalization process, one should construct a proper model 
in gravity [18]. Now, there have been many models to study the 
non-equilibrium thermalization process [19–31]. Among them, one 
elegant model is presented in [30,31], where the two-point corre-
lation function, Wilson loop, and entanglement entropy were used 
to detect the thermalization. Now, such an investigation has been 
generalized to many gravity models [32–49].

The purpose of this paper is to investigate how the noncom-
mutative parameter affects the thermalization process. In the dual 
conformal field theory, we take the two-point correlation function 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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as a thermalization probe1 to study the thermalization behavior. 
According to the AdS/CFT correspondence, this process equals to 
probing the evolution of a shell that interpolates between a pure 
AdS and a noncommutative AdS black brane by the geodesic. Con-
cretely we first study the motion profile of the geodesic, and then 
the renormalized geodesic length. For the spacetime with a hori-
zon, we find for both the thermalization probes, larger the non-
commutative parameter is, longer the thermalization time is. For 
the spacetime without a horizon, we find the shell will not col-
lapse all the time but will stop in a stable state. In addition, we 
also obtain the fitting functions of the thermalization curve for 
both thermalization probes. Based on the functions, we get the 
thermalization velocity and thermalization acceleration.

The remainder of this paper is organized as follows. In the next 
section, we shall provide a brief review of the gravitational collapse 
solution in the noncommutative geometry. Then in Section 3, the 
collapse of the shell is probed by making use of the renormalized 
geodesic length. The last section is devoted to our conclusions.

2. The noncommutative Vaidya AdS black branes

In this section, we will give a brief review of the noncommuta-
tive Vaidya AdS black branes. For details, please see [16]. As well 
known, the metric for a static spherically symmetric noncommu-
tative AdS black hole is [16]

ds2 = − f (r)dt2 + f −1(r)dr2 + r2dφ2 + r2 sin2 φdϕ2, (1)

where

f (r) = 1 − 4Mγ ( 3
2 , r2

4θ
)

r
√

π
+ r2

S2
, (2)

in which S is the radius of the AdS, M is the total mass diffused 
throughout the region of linear size 

√
θ , θ comes from the non-

commutator of [xμ, xν ] = iθμν with θμν = θdiag[ε1, · · · , εD/2], and 
γ ( 3

2 , r2

4θ
) is the lower incomplete Gamma function defined by

γ (
3

2
,

r2

4θ
) ≡

r2
4θ∫

0

t
1
2 e−tdt. (3)

The black hole temperature in the noncommutative geometry is 
given by

T NC ≡ κ

2π
= 1

4π

∂ f (r)

∂r
|rh , (4)

where rh is the event horizon of the black hole determined by 
f (rh) = 0. In addition, according to the properties of gamma func-
tion

γ (a + 1, x) = aγ (a, x) − xae−x, (5)

γ (
1

2
, x2) ≡ 2

x∫
0

e−t2
dt = √

πErf(x), (6)

Eq. (2) changes into

f (r) = 1 − 2M

r
Erf(

r

2
√

θ
) + r2

S2
+ 2M√

πθ
e− r2

4θ , (7)

1 Expectation value of Wilson loop and entanglement entropy also can be treated 
as the thermalization probes, it has been found [30,31] that all of them have similar 
behavior thus here we only use the two-point correlation.
where Erf( r
2
√

θ
) is a Gauss error function. It is obvious that this 

black hole spacetime is closely dependent on the noncommutative 
parameter θ . As θ → 0, this background reduces to the conven-
tional Schwarzschild AdS black hole. In this case, noncommutative 
fluctuations are negligible and the spacetime can be well described 
by a classical manifold.

As done in [50], we can also consider the limit where the 
boundary of AdSd+1 is Rd instead of R × Sd+1, namely the so-
called infinite volume limit. After the coordinate transformation 
z = S2

r , Eq. (1) and the components of metric in this case change 
into

ds2 = 1

z2
[−H(z)dt2 + H−1(z)dz2 + dx2

i ], (8)

H(z) = 1 − 2MErf(
1

2
√

θ z
)z3 + 2Mz2

√
πθ

e
− 1

4θ z2 , (9)

where S has been set to one and i = 1, 2. Introducing the 
Eddington–Finkelstein coordinate system, namely

dv = dt − 1

H(z)
dz, (10)

the background spacetime in Eq. (8) changes into

ds2 = 1

z2

[
−H(z)dv2 − 2dz dv + dx2

i

]
. (11)

Now noncommutative Vaidya AdS black brane can be obtained by 
freeing the mass parameter in Eq. (9) as an arbitrary function of v . 
As stressed in [51], in this case, the mass source includes the new 
matter related to the noncommutativity as well as the matter on 
the shell. In other words, Eq. (11) can be treated as the solution of 
the following field equation

Rμν − 1

2
Rgμν + �gμν = 8πG(T θ

μν + T m
μν), (12)

where T θ
μν is the energy–momentum tensor arising from the non-

commutative background and

T m
μν ∝ 2z2 dM(v)

dv
δμvδνv . (13)

Here M(v) is mass of a collapsing noncommutative black brane, 
which is usually chosen as the smooth function

M(v) = M

2

(
1 + tanh

v

v0

)
, (14)

where v0 represents a finite shell thickness. For Eq. (14), in the 
limit v → −∞, the mass vanishes and the background in Eq. (11)
thus corresponds to a pure AdS space. In the limit v → ∞, the 
mass changes into a constant and so the background represents a 
static noncommutative Schwarzschild AdS black brane.

3. Probe of the thermalization

As the model that describes the thermalization process on the 
dual conformal field theory is constructed, we will choose the two-
point correlation function at equal time to explore how the non-
commutative parameters affects the thermalization process. Ac-
cording to the AdS/CFT correspondence, the equal time two-point 
correlation function under the saddle-point approximation can be 
holographically approximated as [31,52]

〈O(t0, xi)O(t0, x′
i)〉 ≈ e−�L, (15)

if the conformal dimension � of scalar operator O is large 
enough, where L indicates the length of the bulk geodesic be-
tween the points (t0, xi) and (t0, x′) on the AdS boundary. Usually 
i
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Fig. 1. In (a), θ changes from 0.1 to 0.3 with step θ = 0.02, in (b), θ changes from 0.123 to 0.124 with step θ = 0.0001.
the geodesic length above is divergent due to the contribution of 
the AdS boundary, one should eliminate the divergent part and use 
the renormalized geodesic length, defined by δL = L + 2 ln z0 [30,
31], where z0 is a UV cut-off that can be read from the boundary 
conditions

z(
l

2
) = z0, v(

l

2
) = t0, (16)

in which l is the boundary separation between the points lies en-
tirely over the x1 direction and t0 is the time of the thermalization 
probe moving from the shell to the boundary, which will be called 
as thermalization time later. Next we would like to rename x1 as x
and employ it to parameterize the trajectory such that the proper 
length is given by

L = 2

l
2∫

0

dx

√
�

z
, (17)

with

� = 1 − 2z′(x)v ′(x) − H(v, z)v ′(x)2. (18)

To minimize the length of the geodesic, we need to solve the two 
equations of motion for z(x) and v(x) respectively. Varying the 
length functional in Eq. (17), we get

z(x)
√

�∂x(
z′(x) + H(v, z)v ′(x)

z(x)
√

�
) = 1

2

∂ H(v, z)

∂v(x)
v ′ 2(x),

z(x)
√

�∂x(
v ′(x)

z(x)
√

�
) = 1

2

∂ H(v, z)

∂z(x)
v ′ 2(x) + �

z(x)
. (19)

To solve these equations, we need to consider the symmetry of the 
geodesic and impose the following initial conditions

z(0) = z∗, v(0) = v∗, v ′(0) = z′(0) = 0. (20)

Next we intend to solve the equations of motion in Eq. (19)
numerically with the help of the initial conditions in Eq. (20). Dur-
ing the numerics, we will set the shell thickness v0 = 0.01 and 
UV cut-off z0 = 0.01 respectively. In addition, the mass M will be 
set to 1 as done in [12]. In this case, with Eq. (9), we can check 
2
Table 1
The thermalization time t0 of the geodesic probe for different noncommutative pa-
rameters θ and different initial time v∗ with the same boundary separation l = 3.

θ = 0.01 θ = 0.1 θ = 0.3 θ = 0.5 θ = 0.7

v∗ = −0.888 0.597428 0.597526 0.601945 0.605219 0.606315
v∗ = −0.444 0.995173 1.02105 1.07147 1.0729 1.06914
v∗ = −0.111 1.27647 1.33883 1.43042 1.42512 1.41624

whether there is a horizon for different noncommutative param-
eter θ , which is plotted in Fig. 1. From Fig. 1, we know that for 
θ < 0.1234, there is always a horizon while for θ > 0.1234, there 
is not a horizon. That is, for θ < 0.1234 a static black hole will be 
formed at the last stage of the gravitational collapse process, which 
indicates that the non-equilibrium state will approach to an equi-
librium state lastly from the viewpoint of duality. For θ > 0.1234, 
though a black brane will not be formed, we will also use the 
renormalized geodesic length to probe the collapse of the shell so 
that we can know whether it will collapse all the time. The time 
for the shell collapse from the pure AdS to the stable state is also 
called thermalization time though we cannot define an equilibrium 
state strictly in this case.

Firstly, we will set different initial time to explore whether the 
effect of the noncommutative parameters is the same at differ-
ent stage. In Table 1, we list the thermalization time for different 
noncommutative parameters at different initial time v∗ . From it, 
we know that for a fixed initial time, as the noncommutative pa-
rameters raise, the thermalization time increases firstly and then 
decreases step by step. Especially, for the large initial time, v∗ =
−0.111, the thermalization time decreases in advance. So we can 
conclude that the thermalization time for different noncommuta-
tive parameters is non-monotonic. In addition, at v∗ = −0.111, we 
also plot the motion profiles of the geodesic for different noncom-
mutative parameters, which are shown in Fig. 2. In (a) and (b) 
in Fig. 2, we know that the spacetimes own horizons, thus we 
can distinguish whether a static black brane have been formed 
by checking whether the shell has been dropped into the hori-
zon. It is obvious that the shell in (a) has been dropped into the 
horizon while the shell in (b) is out of the horizon. A static black 
brane thus has been formed in (a) while the shell is collapsing in 
(b), which implies that the quark–gluon plasma in the dual confor-
mal theory has been thermalized for the case θ = 0.01 while it is 
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Fig. 2. Motion profile of the geodesic in the noncommutative Vaidya AdS black brane with the same boundary separation and initial time. The black brane horizon is indicated 
by the horizontal green line. The position of the shell is described by the junction between the yellow line and green line. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Thermalization of the renormalized geodesic lengths for different θ at a fixed boundary separation. The yellow line, blue line, green line, red line and purple line 
correspond to θ = 0.7, 0.5, 0.3, 0.1, 0.01 respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)
thermalizing for the case θ = 0.1. In other words, as the noncom-
mutative parameter increases, the thermalization will be delayed. 
In (c) and (d) in Fig. 2, because there is not a horizon, we only 
know that the shell is collapsing, which implies that the quark 
gluon plasma in the dual conformal theory is thermalizing.

With the numerical result of z(x), we can study the renormal-
ized geodesic length. As done in [30–32], we are interested in 
the l independent quantity δL − δLNC with δLNC ≡ δLNC /l being 
the length of the late stage. Fig. 3 gives the relation between the 
renormalized geodesic length and thermalization time for differ-
ent noncommutative parameters θ at a fixed boundary separation. 
From Fig. 3, we know that for large noncommutative parameters, 
θ = 0.3, 0.5, 0.7, though the background spacetimes have not hori-
zons, the shell will not collapse all the time. At the last stage, they 
will stop in a stable state at the same thermalization time. But 
for different θ , the thermalization velocity is different, which can 
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Fig. 4. Comparison of the function in Eq. (21) with the numerical result for the case 
θ = 0.01, 0.1 at the boundary separation l = 3.

be read off from the slope of the thermalization curve. It should 
be noted that the thermalization time for the background space-
time without a horizon, θ = 0.3, 0.5, 0.7, is longer than that with a 
horizon, θ = 0.01, 0.1. That is, as a static black brane is formed the 
shell for large θ is still collapsing. In the small θ region, we can 
observe that the thermalization time increases as θ raises. As the 
boundary separation raises, this effect is more obvious, please see 
(a) and (b) in Fig. 3. Therefore we know that as the noncommuta-
tive parameter increases, the thermalization will be delayed. This 
phenomenon has been also observed previously when we study 
the motion profile of the geodesic. In addition, in Fig. 3, we find for 
a fixed boundary separation there is always a time range in which 
the renormalized geodesic length for different θ takes the same 
value nearly. That is, during that time range, the noncommutative 
parameters have few effect on the renormalized geodesic length. 
In [35,36], effect of the Gauss–Bonnet coefficient on the thermal-
ization time was investigated, they also found this phenomenon.

Interestingly, we find the thermalization curve for a fixed non-
commutative parameter in Fig. 3 can be fitted as a function of t0. 
Here we take the case θ = 0.01, 0.1 as examples. At the boundary 
separation l = 3, the numeric curves for θ = 0.01, 0.1 can be fitted 
as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

g0.01 = −0.163841 − 0.0300155t0 + 0.260142t2
0

− 0.685112t3
0

+ 1.10426t4
0 − 0.703409t5

0 + 0.148517t6
0

g0.1 = −0.156499 − 0.00586248t0 + 0.0557009t2
0

− 0.0778527t3
0

+ 0.32609t4
0 − 0.272237t5

0 + 0.0634748t6
0

(21)

Fig. 4 is the comparison result of the numerical curves and fitting 
function curves. It is obvious that at the order of t6

0, the ther-
malization curve can be described well by the fitting function.2

With this function, we can get the thermalization velocity, de-
fined by v−T ≡ d(δL − δLNC )/dt , and thermalization acceleration, 
defined by a−T ≡ d2(δL − δLNC )/dt2, which are plotted in Fig. 5. 
From the velocity curve, we can observe that there is a phase 
transition point at the middle stage of the thermalization, which 
divides the thermalization into an accelerating and a decelerating 
phase. The phase transition points for different noncommutative 
parameters can be read off from the null point of the accelera-
tion curve. It is easy to find that in the time range, 0 < t0 < 1.024
for θ = 0.01 and 0 < t0 < 1.0125 for θ = 0.1, the thermalization 
is an accelerating process while for the other time range, it is a 

2 For higher order power of t0, we find it has few contributions to the thermal-
ization, including the phase transition point which will be discussed next.
decelerating process before it approaches to the equilibrium state. 
Obviously, as the noncommutative parameter increases, the value 
of the phase transition point decreases. That is, larger the noncom-
mutative parameter is, earlier the thermalization decelerates. This 
result also indicates that the large noncommutative parameter de-
lays the thermalization.

From the acceleration curve, we find that during the accelera-
tion phase, the acceleration is not enhanced always, which first de-
creases, then increases, and decreases once again. In other words, 
the acceleration undergos two phase transition during the thermal-
ization.

4. Conclusions

Gravitational collapse of a thin shell in the noncommutative 
geometry is probed by the renormalized geodesic length, which 
is dual to probe the thermalization in conformal field theory by 
the two-point functions. We first study the motion profiles of 
the geodesic, and then the renormalized geodesic length. For the 
spacetime without a horizon, we find the shell will not collapse 
all the time but will stop in a stable state at the same thermaliza-
tion time. For the spacetime with a horizon, we investigate how 
the noncommutative parameter affects the thermalization process 
by numerical calculation and fitting function. From the numeri-
cal results, we know that the noncommutative parameter delays 
the thermalization process. In [32–34,36], effect of the charge on 
the thermalization time is investigated. They found that as the 
charge increases, the thermalization time decreases. Obviously, the 
noncommutative parameter has the similar effect on the thermal-
ization time as the charge.3 In addition, for both the thermalization 
probes, we observe an overlapped region where the noncommuta-
tive parameter has few influence on them for a fixed boundary 
separation. In fact, this phenomenon has also been observed in 
modified gravity [35,36]. It is explained that this effect arises from 
the difference of the temperature of the dual conformal field for 
the thermalization only becomes fully apparent at distances of the 
order of the thermal screening length l̃D ∼ (π T )−1, where T is the 
temperature of the dual conformal field.

We also find the fitting functions of the thermalization curves. 
With it, we get some useful information about the thermalization. 
We first get the thermalization velocity at a fixed noncommutative 
parameter. From the velocity curve, we know that the thermaliza-
tion is non-monotonic, which is indicated by the negative value 
of the thermalization velocity at the initial thermalization time. 
Secondly we find there is a phase transition point during the ther-
malization, which divides the thermalization into an acceleration 
phase and a deceleration phase. The phase transition point is found 
to be decreased as the noncommutative parameter increases. We 
also obtain the thermalization acceleration, which is found to be 
not enhanced always during the acceleration phase. Recently Liu 
et al. [53,54], followed by [55], have investigated the nonlocal ob-
servables analytically. They found that the thermalization can be 
divided into four regimes: pre-local-equilibration quadratic growth 
regime, post-local-equilibration linear growth regime, a late-time 
regime, and a saturation regime. In each regime, they obtained the 
analytical functions of the nonlocal observables, which are shown 
to be the linear function of the thermalization time. Obviously, our 
result agrees with their result in part for we also obtain this linear 
relation.

3 In this case, how to distinguish the effect of charge and noncommutative pa-
rameters on the thermalization time becomes necessary and important, we will 
address this problem later.
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Fig. 5. Thermalization velocity and acceleration of the renormalized geodesic in a noncommutative Vaidya AdS black brane. The red line and green line correspond to θ = 0.01
and θ = 0.1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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