483 research outputs found

    Tetrakis[(benzene-18-crown-6)potassium]bis[tris(thiocyanato)copper(I)]

    Get PDF
    The title complex, bis­(μ-benzene-18-crown-6)-3κ6 O:4κO;4κ6 O:3κO-bis­(benzene-18-crown-6)-1κ6 O,6κ6 O-tetra-μ-thiocyanato-1:2κ2 S:N;2:3κ2 N:S;4:5κ2 S:N;5:6κ2 N:S-dithio­cyanato-2κN,5κN-2,5-dicopper(I)-1,3,4,6-tetra­potassium(I), [K4Cu2(NCS)6(C16H24O6)4] or {[K(C16H24O6)]4[Cu(NCS)3]2}, consists of four [K(benzene-18-crown-6)]+ cations and two [Cu(NCS)3]2− anions, forming a dimeric structure with site symmetry . In each [Cu(NCS)3]2− anion, the CuI atom is coordinated by three N atoms of thio­cyanate ligands in a trigonal–planar coordination geometry. Each [Cu(NCS)3]2− anion bridges two [K(benzene-18-crown-6)]+ cations, with K—S distances of 3.317 (3) and 3.198 (3) Å, and two [K(benzene-18-crown-6)]+ cations are linked across a crystallographic centre of inversion, with K—O distances of 2.903 (5) Å

    Data Processing Pipeline for Pointing Observations of Lunar-based Ultraviolet Telescope

    Get PDF
    We describe the data processing pipeline developed to reduce the pointing observation data of Lunar-based Ultraviolet Telescope (LUT), which belongs to the Chang'e-3 mission of the Chinese Lunar Exploration Program. The pointing observation program of LUT is dedicated to monitor variable objects in a near-ultraviolet (245-345 nm) band. LUT works in lunar daytime for sufficient power supply, so some special data processing strategies have been developed for the pipeline. The procedures of the pipeline include stray light removing, astrometry, flat fielding employing superflat technique, source extraction and cosmic rays rejection, aperture and PSF photometry, aperture correction, and catalogues archiving, etc. It has been intensively tested and works smoothly with observation data. The photometric accuracy is typically ~0.02 mag for LUT 10 mag stars (30 s exposure), with errors come from background noises, residuals of stray light removing, and flat fielding related errors. The accuracy degrades to be ~0.2 mag for stars of 13.5 mag which is the 5{\sigma} detection limit of LUT.Comment: 10 pages, 7 figures, 4 tables. Minor changes and some expounding words added. Version accepted for publication in Astrophysics and Space Science (Ap&SS

    Clinical Study Improved Outcome of Biliary Atresia with Postoperative High-Dose Steroid

    Get PDF
    Objective. The dosage, duration, and the benefits of high-dose steroid treatment and outcome in biliary atresia (BA) remain controversial. In this study, we evaluated the impact of high-dose steroid therapy on the outcome of BA after the Kasai procedure. Methods. Intravenous prednisolone administration was started 1 week after surgery, followed by 8 to 12 weeks of oral prednisolone. Total bilirubin (TB) levels (3, 6, and 12 months after surgery), early onset of cholangitis, and two-year native liver survival were evaluated. Results. 53.4%, 56.9%, and 58.1% of the patients in the high-dose steroid group were jaundice-free 3, 6, and 12 months after surgery, respectively; these values were significantly higher than the 38.7%, 39.4%, and 43.3% of the low-dose steroid group. One year after surgery, the incidence of cholangitis in the high-dose group (32.0%) was lower than that in the low-dose group (48.0%). Infants with native liver in the high-dose group had a better two-year survival compared to those in the low-dose steroid group (53.7% versus 42.6%). Conclusions. The high-dose steroid protocol can reduce the incidence of cholangitis, increase the jaundice-free rate, and improve two-year survival with native liver after the Kasai operation

    Identification and characterization of microRNAs in Clonorchis sinensis of human health significance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Clonorchis sinensis </it>is a zoonotic parasite causing clonorchiasis-associated human disease such as biliary calculi, cholecystitis, liver cirrhosis, and it is currently classified as carcinogenic to humans for cholangiocarcinoma. MicroRNAs (miRNAs) are non-coding, regulating small RNA molecules which are essential for the complex life cycles of parasites and are involved in parasitic infections. To identify and characterize miRNAs expressed in adult <it>C. sinensis </it>residing chronically in the biliary tract, we developed an integrative approach combining deep sequencing and bioinformatic predictions with stem-loop real-time PCR analysis.</p> <p>Results</p> <p>Here we report the use of this approach to identify and clone 6 new and 62,512 conserved <it>C. sinensis </it>miRNAs which belonged to 284 families. There was strong bias on families, family members and sequence nucleotides in <it>C. sinensis</it>. Uracil was the dominant nucleotide, particularly at positions 1, 14 and 22, which were located approximately at the beginning, middle and end of conserved miRNAs. There was no significant "seed region" at the first and ninth positions which were commonly found in human, animals and plants. Categorization of conserved miRNAs indicated that miRNAs of <it>C. sinensis </it>were still innovated and concentrated along three branches of the phylogenetic tree leading to bilaterians, insects and coelomates. There were two miRNA strategies in <it>C. sinensis </it>for its parasitic life: keeping a large category of miRNA families of different animals and keeping stringent conserved seed regions with high active innovation in other places of miRNAs mainly in the middle and the end, which were perfect for the parasite to perform its complex life style and for host changes.</p> <p>Conclusions</p> <p>The present study represented the first large scale characterization of <it>C. sinensis </it>miRNAs, which have implications for understanding the complex biology of this zoonotic parasite, as well as miRNA studies of other related species such as <it>Opisthorchis viverrini </it>and <it>Opisthorchis felineus </it>of human and animal health significance.</p

    Фазовий склад та магніторезистивні властивості плівкових системи Ni/Au/Ni

    Get PDF
    Магнітні багатошарові структури, які останніми роками інтенсивно досліджуються, важливі як з точки зору теоретичних досліджень, так і для практичного застосування. Прикладний інтерес викликаний їх здатністю поєднувати у собі властивості магнітом’яких і магнітотвердих матеріалів, які суттєво залежать від структури і фазового складуз разків.У даній роботі, в якості досліджуваних магнітних структур, було використано тришарові плівкові системи Ni(d) / Au(15 нм) / Ni(25 нм) отримані шляхом пошарової конденсації, де d – товщина верхнього шару Ni, яка змінювалась від 5 до 15 нм

    Mdivi-1, a mitochondrial fission inhibitor, modulates T helper cells and suppresses the development of experimental autoimmune encephalomyelitis.

    Get PDF
    BACKGROUND: Unrestrained activation of Th1 and Th17 cells is associated with the pathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). While inactivation of dynamin-related protein 1 (Drp1), a GTPase that regulates mitochondrial fission, can reduce EAE severity by protecting myelin from demyelination, its effect on immune responses in EAE has not yet been studied. METHODS: We investigated the effect of Mdivi-1, a small molecule inhibitor of Drp1, on EAE. Clinical scores, inflammation, demyelination and Drp1 activation in the central nervous system (CNS), and T cell responses in both CNS and periphery were determined. RESULTS: Mdivi-1 effectively suppressed EAE severity by reducing demyelination and cellular infiltration in the CNS. Mdivi-1 treatment decreased the phosphorylation of Drp1 (ser616) on CD4+ T cells, reduced the numbers of Th1 and Th17 cells, and increased Foxp3+ regulatory T cells in the CNS. Moreover, Mdivi-1 treatment effectively inhibited IFN-γ+, IL-17+, and GM-CSF+ CD4+ T cells, while it induced CD4+ Foxp3+ regulatory T cells in splenocytes by flow cytometry. CONCLUSIONS: Together, our results demonstrate that Mdivi-1 has therapeutic potential in EAE by modulating the balance between Th1/Th17 and regulatory T cells

    Online Video Stream Abstraction and Stylization

    Full text link

    Silencing the epidermal growth factor receptor gene with RNAi may be developed as a potential therapy for non small cell lung cancer

    Get PDF
    Lung cancer has emerged as a leading cause of cancer death in the world. Non-small cell lung cancer (NSCLC) accounts for 75–80% of all lung cancers. Current therapies are ineffective, thus new approaches are needed to improve the therapeutic ratio. Double stranded RNA (dsRNA) -mediated RNA interference (RNAi) has shown promise in gene silencing, the potential of which in developing new methods for the therapy of NSCLC needs to be tested. We report here RNAi induced effective silencing of the epidermal growth factor receptor (EGFR) gene, which is over expressed in NSCLC. NSCLC cell lines A549 and SPC-A1 were transfected with sequence- specific dsRNA as well as various controls. Immune fluorescent labeling and flow cytometry were used to monitor the reduction in the production of EGFR protein. Quantitative reverse-transcriptase PCR was used to detect the level of EGFR mRNA. Cell count, colony assay, scratch assay, MTT assay in vitro and tumor growth assay in athymic nude mice in vivo were used to assess the functional effects of EGFR silencing on tumor cell growth and proliferation. Our data showed transfection of NSCLC cells with dsRNA resulted in sequence specific silencing of EGFR with 71.31% and 71.78 % decreases in EGFR protein production and 37.04% and 54.92% in mRNA transcription in A549 and SPC-A1 cells respectively. The decrease in EGFR protein production caused significant growth inhibition, i.e.: reducing the total cell numbers by 85.0% and 78.3 %, and colony forming numbers by 63.3% and 66.8%. These effects greatly retarded the migration of NSCLC cells by more than 80% both at 24 h and at 48 h, and enhanced chemo-sensitivity to cisplatin by four-fold in A549 cells and seven-fold in SPC-A1. Furthermore, dsRNA specific for EGFR inhibited tumor growth in vivo both in size by 75.06 % and in weight by 73.08 %. Our data demonstrate a new therapeutic effect of sequence specific suppression of EGFR gene expression by RNAi, enabling inhibition of tumor proliferation and growth. However, in vivo use of dsRNA for gene transfer to tumor cells would be limited because dsRNA would be quickly degraded once delivered in vivo. We thus tested a new bovine lentiviral vector and showed lentivector-mediated RNAi effects were efficient and specific. Combining RNAi with this gene delivery system may enable us to develop RNAi for silencing EGFR into an effective therapy for NSCLC

    Puerarin inhibited oxidative stress and alleviated cerebral ischemia-reperfusion injury through PI3K/Akt/Nrf2 signaling pathway

    Get PDF
    Introduction: Puerarin (PUE) is a natural compound isolated from Puerariae Lobatae Radix, which has a neuroprotective effect on IS. We explored the therapeutic effect and underlying mechanism of PUE on cerebral I/R injury by inhibiting oxidative stress related to the PI3K/Akt/Nrf2 pathway in vitro and in vivo. Methods: The middle cerebral artery occlusion and reperfusion (MCAO/R) rats and oxygen-glucose deprivation and reperfusion (OGD/R) were selected as the models, respectively. The therapeutic effect of PUE was observed using triphenyl tetrazolium and hematoxylin-eosin staining. Tunel-NeuN staining and Nissl staining to quantify hippocampal apoptosis. The reactive oxygen species (ROS) level was detected by flow cytometry and immunofluorescence. Biochemical method to detect oxidative stress levels. The protein expression related to PI3K/ Akt/Nrf2 pathway was detected by using Western blotting. Finally, coimmunoprecipitation was used to study the molecular interaction between Keap1 and Nrf2. Results: In vivo and vitro studies showed that PUE improved neurological deficits in rats, as well as decreased oxidative stress. Immunofluorescence and flow cytometry indicated that the release of ROS can be inhibited by PUE. In addition, the Western blotting results showed that PUE promoted the phosphorylation of PI3K and Akt, and enabled Nrf2 to enter the nucleus, which further activated the expression of downstream antioxidant enzymes such as HO1. The combination of PUE with PI3K inhibitor LY294002 reversed these results. Finally, co-immunoprecipitation results showed that PUE promoted Nrf2-Keap1 complex dissociation. Discussion: Taken together, PUE can activate Nrf2 via PI3K/Akt and promote downstream antioxidant enzyme expression, which could further ameliorate oxidative stress, against I/R-induced Neuron injury
    corecore