1,031 research outputs found

    NaCl-induced phosphorylation of light harvesting chlorophyll a/b proteins in thylakoid membranes from the halotolerant green alga, Dunaliella salina

    Get PDF
    AbstractLight could induce phosphorylation of light harvesting chlorophyll a/b binding proteins (LHCII) in Dunaliella salina and spinach thylakoid membranes. We found that neither phosphorylation was affected by glycerol, whereas treatment with NaCl significantly enhanced light-induced LHCII phosphorylation in D. salina thylakoid membranes and inhibited that in spinach. Furthermore, even in the absence of light, NaCl and several other salts induced LHCII phosphorylation in D. salina thylakoid membranes, but not in spinach thylakoid membranes. In addition, hypertonic shock induced LHCII phosphorylation in intact D. salina under dark conditions and cells adapted to different NaCl concentrations exhibited similar LHCII phosphorylation levels. Taken together, these results show for the first time that while LHCII phosphorylation of D. salina thylakoid membranes resembles that of spinach thylakoid membranes in terms of light-mediated control, the two differ with respect to NaCl sensitivity under light and dark conditions

    Chaos on Phase Noise of Van Der Pol Oscillator

    Get PDF
     Phase noise is the most important parameter in many oscillators. The proposed method in this paper is based on nonlinear stochastic differential equation for phase noise analysis approach. The influences of two different sources of noise in the Van Der Pol oscillator adopted this method are compared. The source of noise is a white noise process which is a genuinely stochastic process and the other is actually a deterministic system, which exhibits chaotic behavior in some regions. The behavior of the oscillator under different conditions is investigated numerically. It is shown that the phase noise of the oscillator is affected by a noise arising from chaos than a noise arising from the genuine stochastic process at the same noise intensity

    Identifying vital edges in Chinese air route network via memetic algorithm

    Get PDF
    Due to its rapid development in the past decade, air transportation system has attracted considerable research attention from diverse communities. While most of the previous studies focused on airline networks, here we systematically explore the robustness of the Chinese air route network, and identify the vital edges which form the backbone of Chinese air transportation system. Specifically, we employ a memetic algorithm to minimize the network robustness after removing certain edges hence the solution of this model is the set of vital edges. Counterintuitively, our results show that the most vital edges are not necessarily the edges of highest topological importance, for which we provide an extensive explanation from the microscope of view. Our findings also offer new insights to understanding and optimizing other real-world network systems
    • …
    corecore