676 research outputs found

    Suitability of anthropogeomorphic materials as soil amendments: a biogeochemical study

    Get PDF
    In recent decades, the amount of waste produced by humans has increased greatly. Society demands increasingly high standards of production and quality, leading to the production of greater volumes of waste and consequent increases in the associated risks of contamination. There is international concern regarding the management of all types of wastes and the consequent environmental degradation and public health risks. Land application of wastes, such as animal excrement or vegetable residues, has been carried out since long time ago. However, many environmental problems have now appeared primary because the final goal of the addition of wastes to soils is often the elimination of wastes rather than the enhancement of soil fertility or improvement of soil physical properties. The objective of this thesis was to evaluate the suitability of anthropogeomorphic wastes as soil amendment or fertilizer. For this, different studies have been carried out and described in six chapters: four of them describe the study of Technosols and the other two describe the geochemical accelerated weathering study of biochar and biomass fly ash

    Population Density-based Hospital Recommendation with Mobile LBS Big Data

    Full text link
    The difficulty of getting medical treatment is one of major livelihood issues in China. Since patients lack prior knowledge about the spatial distribution and the capacity of hospitals, some hospitals have abnormally high or sporadic population densities. This paper presents a new model for estimating the spatiotemporal population density in each hospital based on location-based service (LBS) big data, which would be beneficial to guiding and dispersing outpatients. To improve the estimation accuracy, several approaches are proposed to denoise the LBS data and classify people by detecting their various behaviors. In addition, a long short-term memory (LSTM) based deep learning is presented to predict the trend of population density. By using Baidu large-scale LBS logs database, we apply the proposed model to 113 hospitals in Beijing, P. R. China, and constructed an online hospital recommendation system which can provide users with a hospital rank list basing the real-time population density information and the hospitals' basic information such as hospitals' levels and their distances. We also mine several interesting patterns from these LBS logs by using our proposed system

    Recombinational DNA Repair in Cancer and Normal Cells: The Challenge of Functional Analysis

    Get PDF
    A major goal of current cancer research is to understand the functional consequences of mutations in recombinational DNA repair genes. The introduction of artificial recombination substrates into living cells has evolved into a powerful tool to perform functional analysis of DNA double strand break (DSB) repair. Here, we review the principles and practice of current plasmid assays with regard to the two major DSB repair pathways, homologous recombination and nonhomologous end-joining. A spectrum of assay types is available to assess repair in a wide variety of cell lines. However, several technical challenges still need to be overcome. Understanding the alterations of DSB repair in cancers will ultimately provide a rational basis for drug design that may selectively sensitize tumor cells to ionizing radiation and chemotherapy, thereby achieving therapeutic gain

    Poly[(N,N-dimethyl­formamide-κO)tris­(μ-naphthalene-1-acetato)terbium(III)]

    Get PDF
    In title compound, [Tb(C12H9O2)3(C3H7NO)]n, the Tb atom is nine-coordinated by nine O atoms from three naphthalene-1-acetate and one N,N-dimethyl­formamide ligands. The Tb atoms are linked by three bridging naphthalene-1-acetate ligands into a chain parallel to the b axis. Further stabilization of the structure is accomplished by non-classical C—H⋯O hydrogen bonds and C—H⋯π interactions

    Bis{6,6′-dimeth­oxy-2,2′-[ethane-1,2-diyl­bis(imino­methyl­ene)]diphenolato(1.5−)-κ4 O,N,N′,O′}praeseodymium(III)

    Get PDF
    The title compound, [Pr(C18H22.5N2O4)2], is isotypic with its Er and Tb analogues. All interatomic distances, angles and the hydrogen bond geometry are very similar for the three structures.

    Bis{6,6′-dimeth­oxy-2,2′-[ethane-1,2-diyl­bis(imino­methyl­ene)]diphenolato(1.5−)-κ4 O,N,N′,O′}terbium(III)

    Get PDF
    The title compound, [Tb(C18H22.5N2O4)2], is isotypic with its Pr and Tb analogues. All interatomic distances, angles and the hydrogen bond geometry are very similar for the three structures

    2,4-Dibromo-6-{(E)-[(R)-1-phenyl­ethyl]imino­meth­yl}phenol

    Get PDF
    In the title Schiff base, C15H13Br2NO, the benzene and phenyl rings form a dihedral angle of 75.18 (13)°. The N=C bond length of 1.263 (6) Å is shorter than of the N—C bond [1.476 (5) Å], indicating a double bond. In the crystal, there is some pseudosymmetry. This occurs because most of the two mol­ecules are centrosymmetrically related. The mol­ecular structure is stabilized by intra­molecular O—H⋯N hydrogen bonds
    • …
    corecore