5,837 research outputs found

    Spectroscopic Properties of QSOs Selected from Ultraluminous Infrared Galaxy Samples

    Full text link
    We performed spectroscopic observations for a large infrared QSO sample with a total of 25 objects. The sample was compiled from the QDOT redshift survey, the 1 Jy ULIRGs survey and a sample obtained by a cross-correlation study of the IRAS Point Source Catalogue with the ROSAT All Sky Survey Catalogue. Statistical analyses of the optical spectra show that the vast majority of infrared QSOs have narrow permitted emission lines (with FWHM of Hbeta less than 4000 km/s) and more than 60% of them are luminous narrow line Seyfert 1 galaxies. Two of the infrared QSOs are also classified as low ionization BAL QSOs. More than 70% of infrared QSOs are moderately or extremely strong Fe II emitters. This is the highest percentage of strong Fe II emitters in all subclasses of QSO/Seyfert 1 samples. We found that the Fe II to Hbeta, line ratio is significantly correlated with the [OIII]5007 peak and Hbeta blueshift. Soft X-ray weak infrared QSOs tend to have large blueshifts in permitted emission lines and significant Fe II48,49 (5100--5400 A) residuals relative to the Boroson & Green Fe II template. If the blueshifts in permitted lines are caused by outflows, then they appear to be common in infrared QSOs. As the infrared-selected QSO sample includes both luminous narrow line Seyfert 1 galaxies and low ionization BAL QSOs, it could be a useful laboratory to investigate the evolutionary connection among these objects.Comment: 35 pages,14 figures, 4 tables, accepted for publication in A

    The Physical Connections Among IR QSOs, PG QSOs and Narrow-Line Seyfert 1 Galaxies

    Full text link
    We study the properties of infrared-selected QSOs (IR QSOs), optically-selected QSOs (PG QSOs) and Narrow Line Seyfert 1 galaxies (NLS1s). We compare their properties from the infrared to the optical and examine various correlations among the black hole mass, accretion rate, star formation rate and optical and infrared luminosities. We find that the infrared excess in IR QSOs is mostly in the far infrared, and their infrared spectral indices suggest that the excess emission is from low temperature dust heated by starbursts rather than AGNs. The infrared excess is therefore a useful criterion to separate the relative contributions of starbursts and AGNs. We further find a tight correlation between the star formation rate and the accretion rate of central AGNs for IR QSOs. The ratio of the star formation rate and the accretion rate is about several hundred for IR QSOs, but decreases with the central black hole mass. This shows that the tight correlation between the stellar mass and the central black hole mass is preserved in massive starbursts during violent mergers. We suggest that the higher Eddington ratios of NLS1s and IR QSOs imply that they are in the early stage of evolution toward classical Seyfert 1's and QSOs, respectively.Comment: 32 pages, 6 figures, accepted by Ap

    In silico identification of the key components and steps in IFN-γ induced JAK-STAT signaling pathway

    Get PDF
    Systems biology efforts are increasingly adopting quantitative, mechanistic modeling to study cellular signal transduction pathways and other networks. However, it is uncertain whether the particular set of kinetic parameter values of the model closely approximates the corresponding biological system. We propose that the parameters be assigned statistical distributions that reflect the degree of uncertainty for a comprehensive simulation analysis. From this analysis, we globally identify the key components and steps in signal transduction networks at a systems level. We investigated a recent mathematical model of interferon gamma induced Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling pathway by applying multi-parametric sensitivity analysis that is based on simultaneous variation of the parameter values. We find that suppressor of cytokine signaling-1, nuclear phosphatases, cytoplasmic STAT1, and the corresponding reaction steps are sensitive perturbation points of this pathway

    Atomistic Investigation of Titanium Carbide Ti8C5 under Impact Loading

    Get PDF
    Titanium carbides attract attention from both academic and industry fields because of their intriguing mechanical properties and proven potential as appealing candidates in the variety of fields such as nanomechanics, nanoelectronics, energy storage and oil/water separation devices. A recent study revealed that the presence of Ti8C5 not only improves the impact strength of composites as coatings, but also possesses significant strengthening performance as an interlayer material in composites by forming strong bonding between different matrices, which sheds light on the design of impact protection composite materials. To further investigate the impact resistance and strengthening mechanism of Ti8C5, a pilot Molecular Dynamics (MD) study utilizing comb3 potential is carried out on a Ti8C5 nanosheet by subjecting it to hypervelocity impacts. The deformation behaviour of Ti8C5 and the related impact resist mechanisms are assessed in this research. At a low impact velocity ~0.5 km/s, the main resonance frequency of Ti8C5 is 11.9 GHz and its low Q factor (111.9) indicates a decent energy damping capability, which would eliminate the received energy in an interfacial reflection process and weaken the shock waves for Ti8C5 strengthened composites. As the impact velocity increases above the threshold of 1.8 km/s, Ti8C5 demonstrates brittle behaviour, which is signified by its insignificant out-of-plane deformation prior to crack initiation. When tracking atomic Von Mises stress distribution, the elastic wave propagation velocity of Ti8C5 is calculated to be 5.34 and 5.90 km/s for X and Y directions, respectively. These figures are inferior compared with graphene and copper, which indicate slower energy delocalization rates and thus less energy dissipation via deformation is expected prior to bond break. However, because of its relatively small mass density comparing with copper, Ti8C5 presents superior specific penetration. This study provides a fundamental understanding of the deformation and penetration mechanisms of titanium carbide nanosheets under impact, which is crucial in order to facilitate emerging impact protection applications for titanium carbide-related composites

    Polymethylhydrosiloxane-modified gas-diffusion cathode for more efficient and durable H2O2 electrosynthesis in the context of water treatment

    Full text link
    On-site H2O2 electrosynthesis via two-electron oxygen reduction reaction (ORR) is attracting great interest forwater treatment. The use of carbon black-based gas-diffusion electrodes (GDEs) is especially appealing, but theiractivity, selectivity and long-term stability must be improved. Here, a facile GDEs modification strategy usingtrace polymethylhydrosiloxane (PMHS) allowed reaching a outstanding H2O2 production, outperforming theconventional polytetrafluoroethylene (PTFE)-GDE (1874.8 vs 1087.4 mg L-1 at 360 min). The superhydrophobicityconferred by PMHS endowed the catalytic layer with high faradaic efficiencies (76.2%-89.7%)during long-term operation for 60 h. The electrochemical tests confirmed the high activity and selectivity of thePMHS-modified GDE. Moreover, the efficient degradation of several micropollutants by the electro-Fentonprocess demonstrated the great potential of the new GDE. An in-depth understanding of the roles of PMHSfunctional groups is provided from DFT calculations: the -CH3 groups contribute to form a superhydrophobicinterface, whereas Si-H and as-formed Si-O-C sites modulate the coordination environment of active carboncenters

    Revealing inherent quantum interference and entanglement of a Dirac Fermion

    Full text link
    The Dirac equation is critical to understanding the universe, and plays an important role in technological advancements. Compared to the stationary solution, the dynamical evolution under the Dirac Hamiltonian is less understood, exemplified by Zitterbewegung. Although originally predicted in relativistic quantum mechanics, Zitterbewegung can also appear in some classical systems, which leads to the important question of whether Zitterbewegung of Dirac Fermions is underlain by a more fundamental and universal interference behavior without classical analogs. We here reveal such an interference pattern in phase space, which underlies but goes beyond Zitterbewegung, and whose nonclassicality is manifested by the negativity of the phase-space quasiprobability distribution, and the associated pseudospin-momentum entanglement. We confirm this discovery by numerical simulation and an on-chip experiment, where a superconducting qubit and a quantized microwave field respectively emulate the internal and external degrees of freedom of a Dirac particle. The measured quasiprobability negativities well agree with the numerical simulation. Besides being of fundamental importance, the demonstrated nonclassical effects are useful in quantum technology.Comment: 18 pages, 15 figure

    Quantum Non-Demolition Measurement on the Spin Precession of Laser-Trapped 171^{171}Yb Atoms

    Full text link
    Quantum non-demolition (QND) measurement enhances the detection efficiency and measurement fidelity, and is highly desired for its applications in precision measurements and quantum information processing. We propose and demonstrate a QND measurement scheme for the spin states of laser-trapped atoms. On 171^{171}Yb atoms held in an optical dipole trap, a transition that is simultaneously cycling, spin-state selective, and spin-state preserving is created by introducing a circularly polarized beam of control laser to optically dress the spin states in the excited level, while leaving the spin states in the ground level unperturbed. We measure the phase of spin precession of 5×1045\times10^{4} atoms in a bias magnetic field of 20 mG. This QND approach reduces the optical absorption detection noise by ∼\sim19 dB, to a level of 2.3 dB below the atomic quantum projection noise. In addition to providing a general approach for efficient spin-state readout, this all-optical technique allows quick switching and real-time programming for quantum sensing and quantum information processing

    The Properties of H{\alpha} Emission-Line Galaxies at z = 2.24

    Full text link
    Using deep narrow-band H2S1H_2S1 and KsK_{s}-band imaging data obtained with CFHT/WIRCam, we identify a sample of 56 Hα\alpha emission-line galaxies (ELGs) at z=2.24z=2.24 with the 5σ\sigma depths of H2S1=22.8H_2S1=22.8 and Ks=24.8K_{s}=24.8 (AB) over 383 arcmin2^{2} area in the ECDFS. A detailed analysis is carried out with existing multi-wavelength data in this field. Three of the 56 Hα\alpha ELGs are detected in Chandra 4 Ms X-ray observation and two of them are classified as AGNs. The rest-frame UV and optical morphologies revealed by HST/ACS and WFC3 deep images show that nearly half of the Hα\alpha ELGs are either merging systems or with a close companion, indicating that the merging/interacting processes play a key role in regulating star formation at cosmic epoch z=2-3; About 14% are too faint to be resolved in the rest-frame UV morphology due to high dust extinction. We estimate dust extinction from SEDs. We find that dust extinction is generally correlated with Hα\alpha luminosity and stellar mass (SM). Our results suggest that Hα\alpha ELGs are representative of star-forming galaxies (SFGs). Applying extinction correction for individual objects, we examine the intrinsic Hα\alpha luminosity function (LF) at z=2.24z=2.24, obtaining a best-fit Schechter function characterized by a faint-end slope of α=−1.3\alpha=-1.3. This is shallower than the typical slope of α∼−1.6\alpha \sim -1.6 in previous works based on constant extinction correction. We demonstrate that this difference is mainly due to the different extinction corrections. The proper extinction correction is thus key to recovering the intrinsic LF as the extinction globally increases with Hα\alpha luminosity. Moreover, we find that our Hα\alpha LF mirrors the SM function of SFGs at the same cosmic epoch. This finding indeed reflects the tight correlation between SFR and SM for the SFGs, i.e., the so-called main sequence.Comment: 15 pages, 12 figures, 2 tables, Received 2013 October 11; accepted 2014 February 13; published 2014 March 18 by Ap
    • …
    corecore