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Abstract Systems biology efforts are increasingly adopting
quantitative, mechanistic modeling to study cellular signal trans-
duction pathways and other networks. However, it is uncertain
whether the particular set of kinetic parameter values of the
model closely approximates the corresponding biological system.
We propose that the parameters be assigned statistical distribu-
tions that reflect the degree of uncertainty for a comprehensive
simulation analysis. From this analysis, we globally identify
the key components and steps in signal transduction networks
at a systems level. We investigated a recent mathematical model
of interferon gamma induced Janus kinase-signal transducers
and activators of transcription (JAK-STAT) signaling pathway
by applying multi-parametric sensitivity analysis that is based
on simultaneous variation of the parameter values. We find that
suppressor of cytokine signaling-1, nuclear phosphatases, cyto-
plasmic STAT1, and the corresponding reaction steps are sensi-
tive perturbation points of this pathway.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Considerable efforts have been made so far in the realm of

systems biology for dynamical modeling and systems analysis

of cellular signal transduction pathways and other networks.
Abbreviations: IFN-c, interferon gamma; JAK, Janus kinase; STAT,
signal transducers and activators of transcription; IFNR, interferon-c
receptor; RJ, IFNR–JAK complex; STAT1, signal transducer and
activator of transcription 1; SHP-2, SH2 domain-containing tyrosine
phosphatase 2; SOCS1, suppressor of cytokine signaling-1; PPN,
nuclear phosphatase; PPX, unidentified phosphatase in the cytoplasm;
MAPK, mitogen-activated protein kinase; MPSA, multi-parametric
sensitivity analysis
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Quantitative mechanism-based models could allow researchers

to predict the comprehensive behavior of the specified system

over time and to track its dynamics for each set of fixed system

parameters [1–8]. However, all of the parameters including rate

constants and initial components concentrations in the mathe-

matical models must be experimentally measured or inferred to

specify the model. Even for those models with experimentally

estimated parameters, it is still uncertain whether the particu-

lar set of parameters closely approximates the corresponding

biological system because some of the kinetic parameters are

usually taken or estimated from measurements reported by dif-

ferent laboratories using different in vitro models and condi-

tions. Given the inherent uncertainties in the structure and

parameter values of the models, parameters can be assigned

statistical distributions that reflect the degree of uncertainty

and then simulation analysis can be performed by sampling

from the distributions. It is therefore of vital importance not

only to study the dynamical properties governed by the partic-

ular kinetic parameters but also to further investigate the ef-

fects of their perturbations on the overall system. The

purpose of this work is trying to answer the question: which

signaling components and rate constants are more critical to

the output behavior of the system? Investigation of such a

question has been one of the major problems raised in systems

biology [9].

In this study, we chose the interferon-c (IFN-c) induced Ja-

nus kinase-signal transducers and activators of transcription

(JAK-STAT) pathway for analysis. IFN-c, or type II IFN,

was first identified in PHA-activated lymphocyte supernatants

with distinctive antiviral activity [10] and is a pleiotropic cyto-

kine widely involved in the regulation of both innate and adap-

tive immune responses. The IFN-c induced JAK-STAT

pathway is a stress-responsive mechanism that transduces sig-

nals from the cell surface to the nucleus. The binding of the

cytokine to its cell-surface receptor results in receptor dimer-

ization and the subsequent activation of JAK tyrosine kinases,

which are constitutively associated with the receptors. The

receptors are then phosphorylated by activated JAKs and

serve as docking sites for the STAT1. STAT1 is phosphory-

lated by JAK, dimerizes, and subsequently leaves the receptor

and translocates to the nucleus, where it activates gene tran-

scription. The STAT1 dimers in the nucleus can be dephospho-

rylated to be STAT1 monomers and transported back to the

cytosol by nuclear export [11,12]. Dysregulation of JAK-STAT
blished by Elsevier B.V. All rights reserved.
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signaling is associated with various immune disorders and can-

cers. The signaling strength, kinetics, and specificity of the

JAK-STAT pathway are modulated at many levels by distinct

regulatory proteins including the suppressor of cytokine sig-

naling (SOCS) proteins, SH2 domain-containing tyrosine

phosphatase 2 (SHP-2), and various cytoplasmic and nuclear

protein tyrosine phosphatases (PTPs) [13–16]. In this study,

we use STAT to represent STAT1 in particular, in the absence

of kinetic data distinguishing rate constants for the different

STAT isoforms. The basic steps and regulatory scheme of

JAK-STAT pathway are shown in Fig. 1.

Here, we propose a global approach for systematic analysis

of the JAK-STAT signaling pathway against variations in ki-

netic parameters and initial concentrations of signaling pro-

teins. The multi-parametric sensitivity analysis (MPSA)

method used in this study is based on a Monte-Carlo method

over a broad range of simultaneous variation of parameters in

uniform distribution followed by a statistical assessment. With

this method, we globally identify the key components and

steps that are critical to the dynamical behaviors of this signal-

ing pathway.
2. Materials and methods

2.1. The mathematical model
We employ the mathematical model developed by Satoshi Yamada

et al. in 2003 [17] for the IFN-c induced JAK-STAT signaling path-
way in liver cells. Since it does not include synthesis of new tran-
scription factors, the direct transcriptional activation by this
signaling pathway is to be referred to as the primary IFN-c response
[16]. Fig. 1 and Supplementary Figure 1 show the dynamic scheme of
this pathway and all the biochemical reactions included in the model.
The model is constructed by ordinary differential equations com-
posed of 32 state variables and 51 parameters. Detailed chemical
reactions as well as their parameters are described in Supplementary
Table 1.
Experimental studies have shown that phosphorylated STAT1 di-

mers in the nucleus (STAT1n\–STAT1n\) mediates and is necessary,
although not sufficient, for the induction of IFN-c-inducible genes
[11,18,19]. Therefore, STAT1n\–STAT1n\ can be regarded as an indi-
rect indicator for target gene activation and we considered STAT1n\–
STAT1n\ as the output of the signal transduction system in our
analysis. The simulated time course of STAT1n\–STAT1n\ using
the reference set of parameters shows that it is detected within
15 min and reaches its maximum between 30 min and one hour, and
then it decreases by SOCS1 action (see Fig. 2). Longer simulations
showed that STAT1n\–STAT1n\ arrives at a steady state after 8 h.

2.2. Multi-parametric sensitivity analysis
The MPSA method was proposed by Hornberger and Chang

[20,21] and further developed by Choi et al. [22] in the field of
hydrology. MPSA is a tool that can be used to define the relative
importance of the factors related to the model [23]. The idea of
MPSA is to inject uncertainty of the parameters into the model by
randomly selecting parameter values from probability distributions
rather than using fixed values. This is achieved using a Monte-Carlo
method in which the model is run repeatedly using sets of parameters
drawn randomly from the distributions. Because the natural distribu-
tions of parameter values for real biological systems are unknown, we
used uniform probability distribution [24]. The range of the parame-
ter distributions are usually determined from the available literature
or guided by the experiences of the researchers. For the MPSA with
respect to the rate constants, due to the large number (51) of param-
eters to vary simultaneously, it was necessary to sample a representa-
tive set from all possible combinations of parameter values. Latin
hypercube sampling method was used to generate random sets of
parameter values for simulations in this case (see below). A criterion
is coded into the algorithm to classify the output of each model sim-
ulation as either acceptable or unacceptable. The final step of MPSA
is statistical evaluation of the occurrences of the acceptable and unac-
ceptable cases, summarized for each parameter. The larger the differ-
ence between the cumulative frequencies of the two cases, the more
significant is the given parameter. The detailed procedure of MPSA
is described in the following:
Step 1. Select the parameters to be tested.
Step 2. Set the range of each selected parameter large enough to cover

all feasible variations.
Step 3. For each parameter, generate a series of independent, random

numbers from a uniform distribution within the defined range
and obtain parameter combinations (see below for sampling
methods).

Step 4. Simulate the model for each chosen set of parameter values
and calculate the corresponding objective function. The
objective function is defined as the sum of squared errors
between the observed and perturbed system output values.
That is

fobjðkÞ ¼
Xn

i

ðxobsðiÞ � xcalði; kÞÞ2 ð1Þ

where fobj is the objective function that describes how much the system
output deviates from the observed data by varying the parameters, xob-
s(i) denotes an observed system output value at the ith sampling time
(this is to be substituted by the simulation result from the reference
parameter values), xcal(i,k) denotes the perturbed system output value
at the ith sampling time for the parameter variation set k, and n is the
number of sampling time points. We set 50 sampling time points in our
analysis.
Step 5. Determine whether the chosen set of parameter values is

�acceptable� or �unacceptable� by comparing the objective
function value to a given threshold. If the objective function
value is greater than the threshold, the set of parameter values
is classified as �unacceptable�. If the value is less than the
threshold, it is classified as �acceptable�. A previous work
[22] indicated that MPSA results are not affected by the choice
of a subjective threshold and here we used the average of the
objective function over all parameter variations as the thresh-
old value.

Step 6. Statistically evaluate the parameter sensitivity. To this end,
we quantitatively compare the distributions of the individual
parameter values associated with the acceptable and the
unacceptable cases. For each selected parameter, the cumula-
tive frequency is computed for both acceptable and unac-
ceptable cases. We evaluate the sensitivity by a direct
measure of the separation of the two cumulative frequency
distributions. We use the following Kolmogorov–Smirnov
(K–S) statistic:

K–S ¼ sup
x

jSaðxÞ � SuðxÞj ð2Þ

where Sa and Su are the cumulative frequency functions correspond-
ing to acceptable cases and unacceptable cases, respectively, and x is
the given parameter. The statistic K–S is determined as the maxi-
mum vertical distance between the cumulative frequency distribution
curves for n acceptable and m unacceptable cases. A larger value of
K–S indicates that the system is sensitive to variation in the given
parameter.
In Step 3 for the 51 rate constants, selecting just two values for each

parameter would generate 251 simulations to run, which is not practi-
cal. Instead, we used the Latin hypercube sampling method to sample
2000 random parameter vectors while evenly covering individual
parameter ranges (some background information about Latin hyper-
cube sampling method is available in the Supplementary material).
This way we could computationally manage the large number (51) of
rate constants being varied simultaneously, while ensuring maximal
sampling through each parameter dimension [25]. Briefly, for the jth
parameter, we divide the range of the parameter into N (= 2000) sub-
intervals of equal size. Then randomly sample N values (pij,
i = 1, . . .,N), one from each subinterval, for the jth parameter. To com-
bine these values of individual parameters to generate sets of parame-
ter values, we randomly permute the N values for each parameter to
get the parameter vectors, i.e., we individually permute the elements
of each column of the matrix pij and use the N rows as the parameter



Fig. 1. IFN-c-induced JAK-STAT1 signal transduction pathway. Different forms of the STAT1 protein are represented as: STAT1c, STAT1c\,
STAT1c\- STAT1c\, corresponding to the STAT1 monomers, phosphorylated STAT1 monomers, and phosphorylated dimers, respectively, in the
cytoplasm. In the symbols for the nuclear counterparts, ‘‘n’’ replaces ‘‘c’’. This diagram is developed from Yamada, S. et al. The relatively important
proteins that were identified in our sensitivity analysis are marked with gray shading boxes. Other signaling proteins with non-zero initial
concentrations are marked with open boxes, whereas proteins with zero initial concentration in the unstimulated cell are not. Reaction steps that we
identified to be critical for the perturbation of the system are in thick arrows.

Fig. 2. Simulated time course profile of STAT1n\–STAT1n\ activated
by continuous exposure to IFN-c using reference kinetic parameter
values. The concentration of IFN-c was set to be 1 nM.
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vectors for our simulations. This sampling method was implemented
by the MATLAB command �lhsdesign� to produce 2000 parameter vec-
tors. Covering the individual parameter ranges evenly is desirable for
good summary statistics in the final step of MPSA.
3. Results

3.1. Key signaling components of the pathway

Since a simulation requires not only the kinetic parameter

values but also the initial concentrations of various signaling

components that could affect the overall system behavior, we

first applied MPSA to pinpoint those critical components pos-
sessing dominant effects. So we examined the influences of

variations in the initial concentrations of the components in

the system. The primary molecular species, namely, the recep-

tor, IFN-c, JAK, STAT1c, PPX (unidentified phosphatase),

SHP-2, PPN (TC45), and SOCS1 were chosen for the MPSA

analysis. The reference values for the initial concentrations

of these signaling proteins and the variation ranges for simula-

tion are shown in Table 1. The initial concentrations of the

other proteins were set to zero. The cumulative frequency dis-

tributions for the acceptable and unacceptable cases of the ini-

tial concentrations of proteins are shown in Fig. 3. The relative

sensitivity is reflected by the difference of the two distributions.

For each signaling protein, K–S statistic was used to evaluate

the statistical difference between the two distributions. The lar-

ger the value of K–S is, the more important the protein is for

the output of this signaling pathway. The results of MPSA are

summarized in Table 1. The MPSA results indicate that

SOCS1, nuclear phosphatase TC45, and STAT1 proteins in

the cytoplasm are relatively important components in the

IFN-c induced JAK-STAT signaling pathway. On the other

hand, the concentrations of JAK, the receptor, SHP-2, and

the cytoplasmic phosphatase PPX are less important for the

output of this system.
3.2. Critical kinetic parameters of the pathway

We further investigated the system to identify the key steps

of the JAK-STAT signaling pathway, i.e., the most sensitive

targets for perturbation. The kinetic rate constant parameters

for our MPSA analysis and their variation ranges for simula-

tion are shown in Table 2. Because the significant parameters

were not known a priori, we decided to vary all 51 parameters.

We ran the 2000 simulations randomly chosen by the Latin



Table 1
Results of MPSA with respect to variations in the initial concentrations of signaling proteins

Signaling protein K–S Reference initial concentration (nM) Range of variation (nM)

SOCS1 0.71 0 0–100
STAT1c 0.64 1000 200–5000
PPN (nuclear phosphatase TC45) 0.41 60 12–300
JAK proteins 0.19 12 2.4–60
Receptor 0.18 12 2.4–60
Interferon 0.03 1 0.2–5
SHP-2 (cytoplasmic phosphatase) 0.02 100 20–500
PPX (cytoplasmic phosphatase) 0.01 50 10–250

Higher K–S values indicate the system behavior is more sensitively affected by changes in the corresponding protein level.
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hypercube sampling method for MPSA on all 51 rate constants

(see Section 2).

Consistent with the previous K–S statistic results, the

parameters related to the identified key signaling components

had relatively significant effects on the time course of

STAT1n\–STAT1n\, whereas variations of the parameters

concerning SHP-2, PPX, receptor, JAK, and IFN-c had rela-

tively minor effects on the output of this system (see Table

2). The cumulative frequency distributions for the acceptable

and unacceptable cases of all the rate constants are shown in

the supplementary material in the website. Specifically, reac-

tions involved in the phosphorylation of STAT1c, negative

regulation by SOCS1, the synthesis and degradation of SOCS1

at the mRNA and at the protein level, and regulation by PPN

had the highest K–S values. These reactions are all molecular

events that affect the level of signaling most directly. Changes

in the reaction kinetics of these steps had a more pronounced

effect on the system behavior of this pathway. Our results also

underscore the importance of SOCS1 with numerous high K–S

reactions involving SOCS1.
Fig. 3. Cumulative frequency distributions of the MPSA with respect to
unacceptable cases and the dashed curve indicates the acceptable cases. The m
for the parameter.
3.3. Comparison to local sensitivity analysis

We examined the extent to which MPSA reveals distinct sys-

tem features that are not readily obtainedby the conventional lo-

cal sensitivity analysis. Regarding parameter changes involving

initial concentrations of signaling molecules, we performed sim-

ulationswith variations either in single parameters or inmultiple

parameters, which are used in local sensitivity analysis and

MPSA, respectively. For single parameter changes (with the

other parameter values fixed), the time course of STAT1n\–

STAT1n\ concentration is shown in Fig. 4A–H for each signal-

ing protein whose concentration was varied. The corresponding

plot for somemultiple simultaneous parameter changes is in Fig.

4I. Despite the fact that (I) shows only a few typical simulations

from the MPSA, we see that the temporal activity of nuclear

STAT1 dimers depends dramatically on whether the variation

was in single or inmultiple simultaneous parameters. It is appar-

ent that single parameter changes provide very limited view of

the wide range of possible system behavior. It may be useful to

assess the effect of variations of a single parameter for certain

purposes. For example, inFig. 4, PPNstands out as the signaling
the initial concentrations of the proteins. Solid curve denotes the
aximum vertical difference between the two curves is the K–S statistic



Table 2
Results of MPSA with respect to variations in the kinetic parameter values

Rate constant K–S Relative step Reference value Range of variation Unit

kf5 0.28 STAT1c phosphorylation 8 0.8–80 106 M�1 s�1

kf21 0.27 SOCS1 negative regulation 20 2–200 106 M�1 s�1

kf18 0.27 SOCS1 mRNA synthesis 0.01 0.001–0.1 nM/s
kb30 0.24 SOCS1 negative regulation 0.8 0.08–8 s�1

kf6 0.23 STAT1c phosphorylation 0.4 0.04–4 s�1

kf31 0.21 SOCS1 negative regulation 1 0.1–10 106 M�1 s�1

kf22 0.2 SOCS1 mRNA degradation 0.0005 0.00005–0.005 s�1

kf30 0.2 SOCS1 negative regulation 8 0.8–80 106 M�1 s�1

kf28 0.2 PPN regulation 0.05 0.005–0.5 s�1

kf20 0.2 SOCS1 protein synthesis 0.01 0.001–0.1 s�1

kf23 0.18 SOCS1 protein degradation 0.0005 0.00005–0.005 s�1

kb31 0.17 SOCS1 negative regulation 0.2 0.02–2 s�1

kb18 0.16 SOCS1 mRNA synthesis 400 40–4000 nM
kf15 0.15 PPN regulation 1 0.1–10 106 M�1 s�1

kb21 0.14 SOCS1 negative regulation 0.1 0.01–1 s�1

kf33 0.14 SOCS1 negative regulation 0.0005 0.00005–0.005 s�1

kf2 0.12 Interferon stimulation 20 2–200 106 M�1 s�1

kb5 0.11 STAT1c phosphorylation 0.8 0.08–8 s�1

kf16 0.1 PPN regulation 0.005 0.0005–0.05 s�1

kb8 0.099 STAT1c dimerization 0.1 0.01–1 s�1

kf27 0.099 PPN regulation 1 0.1–10 106 M�1 s�1

kb2 0.094 Interferon stimulation 0.02 0.002–0.2 s�1

kb27 0.094 PPN regulation 0.2 0.02–2 s�1

kb3 0.088 IFN-R-JAK dimerization 0.2 0.02–2 s�1

kb26 0.086 Nuclear STAT1 dimerization 0.5 0.05–5 s�1

kb15 0.084 PPN regulation 0.2 0.02–2 s�1

kf14 0.084 STAT1 nuclear import 0.005 0.0005–0.05 s�1

kb24 0.083 PPX regulation 0.2 0.02–2 s�1

kf3 0.082 IFN-R-JAK dimerization 40 4–400 106 M�1 s�1

kf8 0.08 STAT1c dimerization 20 2–200 106 M�1 s�1

kf32 0.079 SOCS1 negative regulation 0.003 0.0003–0.03 s�1

kf9 0.076 SHP2 regulation 1 0.1–10 106 M�1 s�1

kf12 0.075 PPX regulation 0.003 0.0003–0.03 s�1

kf17 0.071 STAT1 nuclear export 0.05 0.005–0.5 s�1

kb29 0.068 STAT1\–STAT1\ formation 0.2 0.02–2 s�1

kb9 0.067 SHP2 regulation 0.2 0.02–2 s�1

kf1 0.067 R-JAK formation 100 10–1000 106 M�1 s�1

kb11 0.065 PPX regulation 0.2 0.02–2 s�1

kf25 0.065 PPX regulation 0.003 0.0003–0.03 s�1

kf13 0.06 STAT1\–STAT1\ formation 0.0002 0.00002–0.002 106 M�1 s�1

kf26 0.058 Nuclear STAT1 dimerization 5 0.5–50 106 M�1 s�1

kb7 0.057 STAT1c phosphorylation 0.5 0.05–5 s�1

kb13 0.052 STAT1\–STAT1\ formation 0.2 0.02–2 s�1

kf11 0.052 PPX regulation 1 0.1–10 106 M�1 s�1

kf10 0.051 SHP2 regulation 0.003 0.0003–0.03 s�1

kf24 0.049 PPX regulation 1 0.1–10 106 M�1 s�1

kf4 0.046 IFN-R-JAK dimerization 0.005 0.0005–0.05 s�1

kf19 0.046 SOCS1 mRNA nuclear export 0.001 0.0001–0.01 s�1

kb1 0.043 R-JAK formation 0.05 0.005–0.5 s�1

kf7 0.036 STAT1c phosphorylation 5 0.5–50 106 M�1 s�1

kf29 0.036 STAT1\–STAT1\ formation 0.0002 0.00002–0.002 106 M�1 s�1
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protein whose concentration variation can impact both the re-

sponse time (time to reach the peak) and amplitude of STAT1

activity. However, local sensitivity analysis cannot give us com-

prehensive, combined effects that are only possible from simul-

taneous variations of the parameter values.

MPSA not only makes use of variations in multiple param-

eters but also provides a statistical summary of the large num-

ber of simulations in the form of the K–S values, which helps

to rank the parameters by importance. Since local sensitivity

analysis can also produce quantitative assessment of the im-

pact of single parameter changes, we compared the relative

importance of signaling proteins obtained by both measures.

The quantity that is often used in local sensitivity analysis is

the control coefficient [28]. For our JAK-STAT system, the

control coefficients are defined as follows:
CSTAT1n�–STAT1n�

pi
¼ pi

STAT1n�–STAT1n�

� oðSTAT1n�–STAT1n�Þ
opi

ð3Þ

The coefficients for the local analysis near the reference values of

initial concentrations of signaling components are listed inTable

3. From this, we can see the relative importance is not accurately

assessed by these coefficients. For example, the control

coefficient for PPN had a smaller absolute value than that for

SHP-2, whereas our MPSA, based on a much larger number

of simulations with simultaneously varying parameter values,

showed that PPN is in factmore important than SHP-2. Control

coefficients froma local sensitivity analysis are inherently limited

because they are obtained from small one-parameter changes.

When the rate constants were considered as varying parameter



Fig. 4. Dependency of STAT1 activity on single concentration changes in the signaling components and on simultaneous concentration variations in
multiple components. The time course of nuclear STAT1n\–STAT1n\ for various initial concentrations of (A) SOCS1 (0–100 nM), (B) STAT1c
(1/5–5 times), (C) PPN (1/5–5 times), (D) JAK (1/5–5 times), (E) Receptor (1/5–5 times), (F) Interferon (1/5–5 times), (G) SHP-2 (1/5–5 times), (H)
PPX (1/5–5 times), and (I) typical simultaneous variations of signaling components used in MPSA. The bold line shows the time course from the
simulation using the reference parameter values. The concentration range in the y axis is different for each plot.

Table 3
Control coefficients for the concentration of STAT1n\–STAT1n\
relative to changes in the concentrations of pathway components

Signaling protein Control coefficient

STAT1c 1.1565
JAK proteins 0.3333
Receptor 0.3333
SHP-2 (cytoplasmic phosphatase) �0.2689
Interferon 0.1013
PPN (nuclear phosphatase TC45) �0.0629
PPX (cytoplasmic phosphatase) �0.0629

The control coefficients were obtained by simulations of response to a
change of initial concentrations by 1%.
Using relative changes of initial concentrations less than 1% did not
lead to a significant improvement of the precision of the control
coefficient value.
The coefficients were evaluated at the reference concentrations shown
in Table 1, column 3.
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values, however, the difference between the local sensitivity anal-

ysis and MPSA was not as striking (data not shown).
4. Discussion

It is useful to employ a computational model to systemati-

cally identify the specific perturbations that have significant ef-
fects on the system behavior, especially when conducting

numerous experiments on the living system is not practical.

Sensitivity analysis has been used as an in silico investigation

method to identify critical parameters in signal transduction

[26,27]. For example, Lee et al. [28] investigated the variations

of parameters for the Wnt pathway using control coefficients.

This and many other approaches have been based on local sen-

sitivity analysis, which deals with only small perturbations of

the reference model and/or allows only one parameter to vary

for each simulation. Importantly, traditional local sensitivity

analysis pertains to a particular point in the parameter space.

However, there is probably not a single �true� point that occurs
in nature. It is likely that cells use a �repertoire� of points or re-
gions in the parameter space depending on their genetic and

cellular types. In addition, rate constants and concentrations

of diverse molecules may vary extensively in an interactive

manner among different cellular environments. For these rea-

sons it would be more appropriate to explore, in a probabilistic

context, possibilities of non-linear effects from simultaneous

parameter variations of arbitrary magnitudes by means of a

global sensitivity analysis [29]. The MPSA method proposed

in this study is based on this idea to investigate the influence

of the uncertainty of parameters on the behaviors of the signal-

ing pathway. Fig. 5 shows schematically the comparison be-

tween the local and global sensitivity analysis approach.

Suppose a model has two parameters k1 and k2. In the absence



Fig. 5. Schematic illustration of the difference between local sensitivity
analysis and MPSA. For simplicity, only two axes (k1 and k2) represent
the high dimensionality of the parameter space. Within the interval
bounded by maximum and minimum parameter values, representative
values are sampled for each parameter to produce input parameter
vectors for simulations. In a local sensitivity analysis, sampling points
(large dots) are chosen only along the individual parameter directions.
A global sensitivity analysis such as MPSA is based on model
simulations using multi-variate points (small dots) with comprehensive
coverage of the parameter domain.
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of a priori knowledge of the probability distribution of k1 and

k2, we simply use a uniform distribution to implement global

sensitivity analysis (�maximum entropy�). Then resulting range

of uncertainty in the output are computed and the distribution

of the possible behaviors is statistically analyzed. On the other

hand, control coefficients from local sensitivity analysis about

k1 and k2 represent the (scale-free) slopes of the surface in the

two coordinate directions at the point corresponding to the

reference model. From the very limited sampling of the param-

eter space it is evident that a local sensitivity analysis may miss

the full range of system behaviors that are possible by simulta-

neous variations of multiple parameters. Indeed, we confirmed

this difference in our comparison of the two analyses on the

JAK-STAT pathway. Recently, Bentele et al. [30] illustrated

an extended use of local sensitivity analysis to identify critical

systems parameters in the CD95-induced apoptosis pathway.

They employed local sensitivity analysis for different locations

in the parameter space and statistically analyzed the distribu-

tions of the �sensitivity matrix�, eventually revealing some

intrinsic characteristics of this system.

Through the global sensitivity analysis of the IFN-c induced

JAK-STAT signaling pathway, we have identified that SOCS1,

cytoplasmic STAT1, and nuclear phosphatase TC45 are criti-

cal components for the perturbation of the system output.

The result that the nuclear phosphatase and SOCS1 are more

critical than SHP-2 and the cytoplasmic phosphatase under-

scores the importance of downstream (hence, more direct upon

STAT1) negative regulators compared to upstream regulators.

Recently it was experimentally observed that increased expres-

sion of SOCS1 and STAT1c occurred in IFN-c signaling sen-

sitization without being accompanied by changes in expression

of the receptors or JAK proteins [31] and that SOCS1 defi-

ciency in mice is perinatally lethal [32,33]. The SOCS proteins

are generally expressed at low levels in unstimulated cells and
become rapidly induced by cytokines, thereby blocking contin-

ued signaling and forming a classic negative-feedback loop

[12,34]. Such experimental results imply that JAK-STAT sig-

naling may use variation of key components to achieve differ-

ent behaviors such as IFN-c signaling sensitization, for

example. Our analysis result is also consistent with a previous

work, in that the nuclear phosphatase, PPN, is more important

than other regulatory proteins such as SHP-2 and cytoplasmic

phosphatase PPX in this signal transduction system [17].

Moreover, Swameye et al. [27] developed a simpler model of

JAK-STAT signaling pathway by data-based modeling and

found that STAT1 nucleocytoplasmic shuttling is most sensi-

tive for the perturbation of this system. The importance of

nucleocytoplasmic shuttling process of STAT1 matches well

with our finding that the nuclear phosphatase TC45 (which

promotes the nuclear export) is an important signaling

component.

Since oncogenic tyrosine kinases or autocrine loops result in

constitutively activated STATs contributing to malignant

transformation and tumor progression, identification of key

components and steps in the corresponding signal transduction

system provides useful knowledge for drug discovery and can-

cer therapy [27]. This strategy allows, for example, identifica-

tion of multiple targets that would enable the use of two or

more drugs in smaller dosage [35]. In summary, our work

implicates STAT1c, SOCS1, nuclear phosphatase TC45, and

their corresponding reactions as effective targets for interven-

tion of the IFN-c induced JAK-STAT signaling pathway.

The MPSA approach proposed in this study is applicable to

the analysis of metabolic pathways or other signaling path-

ways such as mitogen-activated protein kinase (MAPK),

bacterial chemotaxis, TNFa-mediated NF-jB, and Wnt

signaling pathways.
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