10 research outputs found

    Low-cost, smartphone-based instant three-dimensional registration system for infant functional near-infrared spectroscopy applications

    Get PDF
    Significance: To effectively apply functional near-infrared spectroscopy (fNIRS)/diffuse optical tomography (DOT) devices, a three-dimensional (3D) model of the position of each optode on a subject’s scalp and the positions of that subject’s cranial landmarks are critical. Obtaining this information accurately in infants, who rarely stop moving, is an ongoing challenge. // Aim: We propose a smartphone-based registration system that can potentially achieve a full-head 3D scan of a 6-month-old infant instantly. // Approach: The proposed system is remotely controlled by a custom-designed Bluetooth controller. The scanned images can either be manually or automatically aligned to generate a 3D head surface model. // Results: A full-head 3D scan of a 6-month-old infant can be achieved within 2 s via this system. In testing on a realistic but static infant head model, the average Euclidean error of optode position using this device was 1.8 mm. // Conclusions: This low-cost 3D registration system therefore has the potential to permit accurate and near-instant fNIRS/DOT spatial registration

    Review of recent advances in frequency-domain near-infrared spectroscopy technologies [Invited]

    Get PDF
    Over the past several decades, near-infrared spectroscopy (NIRS) has become a popular research and clinical tool for non-invasively measuring the oxygenation of biological tissues, with particular emphasis on applications to the human brain. In most cases, NIRS studies are performed using continuous-wave NIRS (CW-NIRS), which can only provide information on relative changes in chromophore concentrations, such as oxygenated and deoxygenated hemoglobin, as well as estimates of tissue oxygen saturation. Another type of NIRS known as frequency-domain NIRS (FD-NIRS) has significant advantages: it can directly measure optical pathlength and thus quantify the scattering and absorption coefficients of sampled tissues and provide direct measurements of absolute chromophore concentrations. This review describes the current status of FD-NIRS technologies, their performance, their advantages, and their limitations as compared to other NIRS methods. Significant landmarks of technological progress include the development of both benchtop and portable/wearable FD-NIRS technologies, sensitive front-end photonic components, and high-frequency phase measurements. Clinical applications of FD-NIRS technologies are discussed to provide context on current applications and needed areas of improvement. The review concludes by providing a roadmap toward the next generation of fully wearable, low-cost FD-NIRS systems

    Review of recent advances in frequency-domain near-infrared spectroscopy technologies

    Get PDF
    Over the past several decades, near-infrared spectroscopy (NIRS) has become a popular research and clinical tool for non-invasively measuring the oxygenation of biological tissues, with particular emphasis on applications to the human brain. In most cases, NIRS studies are performed using continuous-wave NIRS (CW-NIRS), which can only provide information on relative changes in chromophore concentrations, such as oxygenated and deoxygenated hemoglobin, as well as estimates of tissue oxygen saturation. Another type of NIRS known as frequency-domain NIRS (FD-NIRS) has significant advantages: it can directly measure optical pathlength and thus quantify the scattering and absorption coefficients of sampled tissues and provide direct measurements of absolute chromophore concentrations. This review describes the current status of FD-NIRS technologies, their performance, their advantages, and their limitations as compared to other NIRS methods. Significant landmarks of technological progress include the development of both benchtop and portable/wearable FD-NIRS technologies, sensitive front-end photonic components, and high-frequency phase measurements. Clinical applications of FD-NIRS technologies are discussed to provide context on current applications and needed areas of improvement. The review concludes by providing a roadmap toward the next generation of fully wearable, low-cost FD-NIRS systems

    Goaf Locating Based on InSAR and Probability Integration Method

    No full text
    Mining goafs can cause many hazards, such as burst water, spontaneous combustion of coal seams, surface collapse, etc. In this paper, a feature-points-based method for the efficient location of mining goafs is proposed. Different interferometric synthetic aperture radar (DInSAR) is used to monitor the subsidence basin caused by mining. Using the principles of the probability integral method (PIM), the inflection points and the boundary points of the basin monitored by DInSAR are determined and used as feature points to locate the goaf. In this paper, the necessity of locating goafs and the traditional methods used for this task are discussed first. Then, the results of verifying the proposed method by both a simulation experiment and real data experiment are presented. Six RADARSAT-2 images from 13th October 2015 to 5th March 2016 were used to acquire the subsidence basin caused by the 15235 working faces of the Jiulong mining area. The average relative errors of the simulation experiment and real data experiment were about 6.43% and 12.59%, respectively. The average absolute errors of the simulation experiment and real data experiment were about 28 m and 38 m, respectively. In the final part of this paper, the error sources are discussed to illustrate the factors that can affect the location result

    Development and application of an indirect enzyme-linked immunosorbent assay based on recombinant capsid protein for the detection of mink circovirus infection

    No full text
    Abstract Background Mink circovirus (MiCV) is a newly discovered pathogen associated with mink diarrhea. The prevalence and economic importance of this virus remain poorly understood, and no specific serological assay has been developed for the diagnosis of MiCV infection. Results In this study, a recombinant capsid protein antigen expressed in Escherichia coli was utilized to establish an indirect enzyme-linked immunosorbent assay (iELISA). Results revealed that the assay had no cross-reactivity with other related pathogens, and the respective sensitivity and specificity of the proposed iELISA were 92.31% and 91.67% compared with those obtained of Western blot on 138 serum samples from minks. The correlation coefficient between iELISA and Western blot was 0.838 (p > 0.05). iELISA was applied to detect MiCV antibodies in 683 clinical serum samples from different farms from the major mink industry province in China, and 21 of 24 farms with 163 of 683 (23.87%) individuals were tested positive for MiCV antibodies. The positive rates of each of the 21 flocks ranged from 2.33% to 73.68%. Conclusions These results indicated that iELISA was a sensitive and specific method suitable for the large-scale detection of MiCV infections in mink. This study provided an effective method for the serological diagnosis and positive rate investigation of MiCV infection

    fNIRS-EEG BCIs for motor rehabilitation: a review

    No full text
    Motor impairment has a profound impact on a significant number of individuals, leading to a substantial demand for rehabilitation services. Through brain–computer interfaces (BCIs), people with severe motor disabilities could have improved communication with others and control appropriately designed robotic prosthetics, so as to (at least partially) restore their motor abilities. BCI plays a pivotal role in promoting smoother communication and interactions between individuals with motor impairments and others. Moreover, they enable the direct control of assistive devices through brain signals. In particular, their most significant potential lies in the realm of motor rehabilitation, where BCIs can offer real-time feedback to assist users in their training and continuously monitor the brain’s state throughout the entire rehabilitation process. Hybridization of different brain-sensing modalities, especially functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG), has shown great potential in the creation of BCIs for rehabilitating the motor-impaired populations. EEG, as a well-established methodology, can be combined with fNIRS to compensate for the inherent disadvantages and achieve higher temporal and spatial resolution. This paper reviews the recent works in hybrid fNIRS-EEG BCIs for motor rehabilitation, emphasizing the methodologies that utilized motor imagery. An overview of the BCI system and its key components was introduced, followed by an introduction to various devices, strengths and weaknesses of different signal processing techniques, and applications in neuroscience and clinical contexts. The review concludes by discussing the possible challenges and opportunities for future development.</p
    corecore