4,739 research outputs found

    Cosmological Birefringence: an Astrophysical test of Fundamental Physics

    Full text link
    We review the methods used to test for the existence of cosmological birefringence, i.e. a rotation of the plane of linear polarization for electromagnetic radiation traveling over cosmological distances, which might arise in a number of important contexts involving the violation of fundamental physical principles. The main methods use: (1) the radio polarization of radio galaxies and quasars, (2) the ultraviolet polarization of radio galaxies, and (3) the cosmic microwave background polarization. We discuss the main results obtained so far, the advantages and disadvantages of each method, and future prospects.Comment: To appear in the Proceedings of the JENAM 2010 Symposium "From Varying Couplings to Fundamental Physics", held in Lisbon, 6-10 Sept. 201

    HL-1 cells express an inwardly rectifying K+ current activated via muscarinic receptors comparable to that in mouse atrial myocytes

    Get PDF
    An inwardly rectifying K^+ current is present in atrial cardiac myocytes that is activated by acetylcholine (I_{KACh}). Physiologically, activation of the current in the SA node is important in slowing the heart rate with increased parasympathetic tone. It is a paradigm for the direct regulation of signaling effectors by the Gβγ G-protein subunit. Many questions have been addressed in heterologous expression systems with less focus on the behaviour in native myocytes partly because of the technical difficulties in undertaking comparable studies in native cells. In this study, we characterise a potassium current in the atrial-derived cell line HL-1. Using an electrophysiological approach, we compare the characteristics of the potassium current with those in native atrial cells and in a HEK cell line expressing the cloned Kir3.1/3.4 channel. The potassium current recorded in HL-1 is inwardly rectifying and activated by the muscarinic agonist carbachol. Carbachol-activated currents were inhibited by pertussis toxin and tertiapin-Q. The basal current was time-dependently increased when GTP was substituted in the patch-clamp pipette by the non-hydrolysable analogue GTPγS. We compared the kinetics of current modulation in HL-1 with those of freshly isolated atrial mouse cardiomyocytes. The current activation and deactivation kinetics in HL-1 cells are comparable to those measured in atrial cardiomyocytes. Using immunofluorescence, we found GIRK4 at the membrane in HL-1 cells. Real-time RT-PCR confirms the presence of mRNA for the main G-protein subunits, as well as for M2 muscarinic and A1 adenosine receptors. The data suggest HL-1 cells are a good model to study IKAch

    Observation of a One-Dimensional Spin-Orbit Gap in a Quantum Wire

    Full text link
    Understanding the flow of spins in magnetic layered structures has enabled an increase in data storage density in hard drives over the past decade of more than two orders of magnitude1. Following this remarkable success, the field of 'spintronics' or spin-based electronics is moving beyond effects based on local spin polarisation and is turning its attention to spin-orbit interaction (SOI) effects, which hold promise for the production, detection and manipulation of spin currents, allowing coherent transmission of information within a device. While SOI-induced spin transport effects have been observed in two- and three-dimensional samples, these have been subtle and elusive, often detected only indirectly in electrical transport or else with more sophisticated techniques. Here we present the first observation of a predicted 'spin-orbit gap' in a one-dimensional sample, where counter-propagating spins, constituting a spin current, are accompanied by a clear signal in the easily-measured linear conductance of the system.Comment: 10 pages, 5 figures, supplementary informatio

    Remote Manipulation of Droplets on a Flexible Magnetically Responsive Film

    Get PDF
    The manipulation of droplets is used in a wide range of applications, from lab-on-a-chip devices to bioinspired functional surfaces. Although a variety of droplet manipulation techniques have been proposed, active, fast and reversible manipulation of pure discrete droplets remains elusive due to the technical limitations of previous techniques. Here, we describe a novel technique that enables active, fast, precise and reversible control over the position and motion of a pure discrete droplet with only a permanent magnet by utilizing a magnetically responsive flexible film possessing actuating hierarchical pillars on the surface. This magnetically responsive surface shows reliable actuating capabilities with immediate field responses and maximum tilting angles of ???90??. Furthermore, the magnetic responsive film exhibits superhydrophobicity regardless of tilting angles of the actuating pillars. Using this magnetically responsive film, we demonstrate active and reversible manipulation of droplets with a remote magnetic force.open0

    Crack-Like Processes Governing the Onset of Frictional Slip

    Full text link
    We perform real-time measurements of the net contact area between two blocks of like material at the onset of frictional slip. We show that the process of interface detachment, which immediately precedes the inception of frictional sliding, is governed by three different types of detachment fronts. These crack-like detachment fronts differ by both their propagation velocities and by the amount of net contact surface reduction caused by their passage. The most rapid fronts propagate at intersonic velocities but generate a negligible reduction in contact area across the interface. Sub-Rayleigh fronts are crack-like modes which propagate at velocities up to the Rayleigh wave speed, VR, and give rise to an approximate 10% reduction in net contact area. The most efficient contact area reduction (~20%) is precipitated by the passage of slow detachment fronts. These fronts propagate at anomalously slow velocities, which are over an order of magnitude lower than VR yet orders of magnitude higher than other characteristic velocity scales such as either slip or loading velocities. Slow fronts are generated, in conjunction with intersonic fronts, by the sudden arrest of sub-Rayleigh fronts. No overall sliding of the interface occurs until either of the slower two fronts traverses the entire interface, and motion at the leading edge of the interface is initiated. Slip at the trailing edge of the interface accompanies the motion of both the slow and sub-Rayleigh fronts. We might expect these modes to be important in both fault nucleation and earthquake dynamics.Comment: 19 page, 5 figures, to appear in International Journal of Fractur

    Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging

    Get PDF
    The recovery of objects obscured by scattering is an important goal in imaging and has been approached by exploiting, for example, coherence properties, ballistic photons or penetrating wavelengths. Common methods use scattered light transmitted through an occluding material, although these fail if the occluder is opaque. Light is scattered not only by transmission through objects, but also by multiple reflection from diffuse surfaces in a scene. This reflected light contains information about the scene that becomes mixed by the diffuse reflections before reaching the image sensor. This mixing is difficult to decode using traditional cameras. Here we report the combination of a time-of-flight technique and computational reconstruction algorithms to untangle image information mixed by diffuse reflection. We demonstrate a three-dimensional range camera able to look around a corner using diffusely reflected light that achieves sub-millimetre depth precision and centimetre lateral precision over 40 cm×40 cm×40 cm of hidden space.MIT Media Lab ConsortiumUnited States. Defense Advanced Research Projects Agency. Young Faculty AwardMassachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contract W911NF-07-D-0004

    Mitochondrial DNA Copy Number Is Associated with Breast Cancer Risk

    Get PDF
    Mitochondrial DNA (mtDNA) copy number in peripheral blood is associated with increased risk of several cancers. However, data from prospective studies on mtDNA copy number and breast cancer risk are lacking. We evaluated the association between mtDNA copy number in peripheral blood and breast cancer risk in a nested case-control study of 183 breast cancer cases with pre-diagnostic blood samples and 529 individually matched controls among participants of the Singapore Chinese Health Study. The mtDNA copy number was measured using real time PCR. Conditional logistic regression analyses showed that there was an overall positive association between mtDNA copy number and breast cancer risk (Ptrend = 0.01). The elevated risk for higher mtDNA copy numbers was primarily seen for women with <3 years between blood draw and cancer diagnosis; ORs (95% CIs) for 2nd, 3rd, 4th, and 5th quintile of mtDNA copy number were 1.52 (0.61, 3.82), 2.52 (1.03, 6.12), 3.12 (1.31, 7.43), and 3.06 (1.25, 7.47), respectively, compared with the 1st quintile (Ptrend = 0.004). There was no association between mtDNA copy number and breast cancer risk among women who donated a blood sample ≥3 years before breast cancer diagnosis (Ptrend = 0.41). This study supports a prospective association between increased mtDNA copy number and breast cancer risk that is dependent on the time interval between blood collection and breast cancer diagnosis. Future studies are warranted to confirm these findings and to elucidate the biological role of mtDNA copy number in breast cancer risk. © 2013 Thyagarajan et al

    Generation of photovoltage in graphene on a femtosecond time scale through efficient carrier heating

    Get PDF
    Graphene is a promising material for ultrafast and broadband photodetection. Earlier studies addressed the general operation of graphene-based photo-thermoelectric devices, and the switching speed, which is limited by the charge carrier cooling time, on the order of picoseconds. However, the generation of the photovoltage could occur at a much faster time scale, as it is associated with the carrier heating time. Here, we measure the photovoltage generation time and find it to be faster than 50 femtoseconds. As a proof-of-principle application of this ultrafast photodetector, we use graphene to directly measure, electrically, the pulse duration of a sub-50 femtosecond laser pulse. The observation that carrier heating is ultrafast suggests that energy from absorbed photons can be efficiently transferred to carrier heat. To study this, we examine the spectral response and find a constant spectral responsivity between 500 and 1500 nm. This is consistent with efficient electron heating. These results are promising for ultrafast femtosecond and broadband photodetector applications.Comment: 6 pages, 4 figure

    Benznidazole biotransformation and multiple targets in <i>Trypanosoma</i> cruzi revealed by metabolomics

    Get PDF
    &lt;b&gt;Background&lt;/b&gt;&lt;p&gt;&lt;/p&gt; The first line treatment for Chagas disease, a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, involves administration of benznidazole (Bzn). Bzn is a 2-nitroimidazole pro-drug which requires nitroreduction to become active, although its mode of action is not fully understood. In the present work we used a non-targeted MS-based metabolomics approach to study the metabolic response of T. cruzi to Bzn.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methodology/Principal findings&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Parasites treated with Bzn were minimally altered compared to untreated trypanosomes, although the redox active thiols trypanothione, homotrypanothione and cysteine were significantly diminished in abundance post-treatment. In addition, multiple Bzn-derived metabolites were detected after treatment. These metabolites included reduction products, fragments and covalent adducts of reduced Bzn linked to each of the major low molecular weight thiols: trypanothione, glutathione, γ-glutamylcysteine, glutathionylspermidine, cysteine and ovothiol A. Bzn products known to be generated in vitro by the unusual trypanosomal nitroreductase, TcNTRI, were found within the parasites, but low molecular weight adducts of glyoxal, a proposed toxic end-product of NTRI Bzn metabolism, were not detected.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions/significance&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Our data is indicative of a major role of the thiol binding capacity of Bzn reduction products in the mechanism of Bzn toxicity against T. cruzi

    Bim and Bmf synergize to induce apoptosis in Neisseria gonorrhoeae infection

    Get PDF
    Abstract: Bcl-2 family proteins including the pro-apoptotic BH3-only proteins are central regulators of apoptotic cell death. Here we show by a focused siRNA miniscreen that the synergistic action of the BH3-only proteins Bim and Bmf is required for apoptosis induced by infection with Neisseria gonorrhoeae (Ngo). While Bim and Bmf were associated with the cytoskeleton of healthy cells, they both were released upon Ngo infection. Loss of Bim and Bmf from the cytoskeleton fraction required the activation of Jun-N-terminal kinase-1 (JNK-1), which in turn depended on Rac-1. Depletion and inhibition of Rac-1, JNK-1, Bim, or Bmf prevented the activation of Bak and Bax and the subsequent activation of caspases. Apoptosis could be reconstituted in Bim-depleted and Bmf-depleted cells by additional silencing of antiapoptotic Mcl-1 and Bcl-XL, respectively. Our data indicate a synergistic role for both cytoskeletal-associated BH3-only proteins, Bim, and Bmf, in an apoptotic pathway leading to the clearance of Ngo-infected cells. Author Summary: A variety of physiological death signals, as well as pathological insults, trigger apoptosis, a genetically programmed form of cell death. Pathogens often induce host cell apoptosis to establish a successful infection. Neisseria gonorrhoeae (Ngo), the etiological agent of the sexually transmitted disease gonorrhoea, is a highly adapted obligate human-specific pathogen and has been shown to induce apoptosis in infected cells. Here we unveil the molecular mechanisms leading to apoptosis of infected cells. We show that Ngo-mediated apoptosis requires a special subset of proapoptotic proteins from the group of BH3-only proteins. BH3-only proteins act as stress sensors to translate toxic environmental signals to the initiation of apoptosis. In a siRNA-based miniscreen, we found Bim and Bmf, BH3-only proteins associated with the cytoskeleton, necessary to induce host cell apoptosis upon infection. Bim and Bmf inactivated different inhibitors of apoptosis and thereby induced cell death in response to infection. Our data unveil a novel pathway of infection-induced apoptosis that enhances our understanding of the mechanism by which BH3-only proteins control apoptotic cell death
    corecore