17,148 research outputs found

    Can board climate-responsible orientation improve corporate carbon performance? The moderating role of board carbon awareness and firm reputation

    Get PDF
    Overwhelming evidence from prior research suggests the functions of the board of directors have a vital influence on carbon performance. However, very little is known about the moderating effect of board functions. This study attempts to fill this gap by developing and empirically testing a conceptual model that highlights the role of board carbon awareness and firm reputation in the relationship between board climate-responsible orientation (BCO) and carbon performance. Using a fixed effect model to analyze data from 665 US listed firms covering a period of 2010–2019, we find that BCO and carbon performance show a U-shaped non-linear relationship. Increased experience of BCO improves corporate carbon performance. The results also provide evidence of the moderating effect of carbon awareness and firm reputation on the relationship between BCO and carbon performance. Carbon awareness reduces symbolic emission reduction actions in carbon management, while, firm reputation will cause symbolic emission reduction actions. Besides, splitting the sample according to firm size and carbon dependency shows BCO has a better effect on the carbon performance of small or medium-sized and high carbon-dependency firms. The findings have important implications for managers to use firm governance mechanisms to improve carbon performance

    Parametric survey of longitudinal prominence oscillation simulations

    Full text link
    It is found that both microflare-sized impulsive heating at one leg of the loop and a suddenly imposed velocity perturbation can propel the prominence to oscillate along the magnetic dip. An extensive parameter survey results in a scaling law, showing that the period of the oscillation, which weakly depends on the length and height of the prominence, and the amplitude of the perturbations, scales with R/g⊙\sqrt{R/g_\odot}, where RR represents the curvature radius of the dip, and g⊙g_\odot is the gravitational acceleration of the Sun. This is consistent with the linear theory of a pendulum, which implies that the field-aligned component of gravity is the main restoring force for the prominence longitudinal oscillations, as confirmed by the force analysis. However, the gas pressure gradient becomes non-negligible for short prominences. The oscillation damps with time in the presence of non-adiabatic processes. Compared to heat conduction, the radiative cooling is the dominant factor leading to the damping. A scaling law for the damping timescale is derived, i.e., τ∼l1.63D0.66w−1.21v0−0.30\tau\sim l^{1.63} D^{0.66}w^{-1.21}v_{0}^{-0.30}, showing strong dependence on the prominence length ll, the geometry of the magnetic dip (characterized by the depth DD and the width ww), and the velocity perturbation amplitude v0v_0. The larger the amplitude, the faster the oscillation damps. It is also found that mass drainage significantly reduces the damping timescale when the perturbation is too strong.Comment: 17 PAGES, 8FIGURE

    Kalman filter based estimation of neutral-axis position of bridge deck sections using strain monitoring data

    Get PDF
    The neutral-axis position has been recognized as a damage indicator for bridge deck assessment because of its high sensitivity to local damage on deck sections. It can be estimated when strain responses at the top and bottom of a deck cross-section under traffic loading are measured. However, the accuracy of neutral-axis position estimation directly using the measured strain responses might be significantly distorted in the presence of measurement noise and varying traffic load patterns. In this study, a Kalman filter (KF) estimator is formulated to locate the neutral-axis position from measured strain responses under traffic loading. Its capability for consistently locating the neutral-axis position under varying traffic load patterns is verified using the field monitoring data of traffic-induced strain responses acquired from the suspension Tsing Ma Bridge under diverse load scenarios (highway traffic, railway traffic, and their combination). The results indicate that the proposed KF estimator gives rise to consistent neutral-axis position estimation results which are independent of load conditions and patterns

    Steady Bell state generation via magnon-photon coupling

    Full text link
    We show that parity-time (PT\mathcal{PT}) symmetry can be spontaneously broken in the recently reported energy level attraction of magnons and cavity photons. In the PT\mathcal{PT}-broken phase, magnon and photon form a high-fidelity Bell state with maximum entanglement. This entanglement is steady and robust against the perturbation of environment, in contrast to the general wisdom that expects instability of the hybridized state when the symmetry is broken. This anomaly is further understood by the compete of non-Hermitian evolution and particle number conservation of the hybridized system. As a comparison, neither PT\mathcal{PT}-symmetry broken nor steady magnon-photon entanglement is observed inside the normal level repulsion case. Our results may open a novel window to utilize magnon-photon entanglement as a resource for quantum technologies.Comment: 5 pages, 4 figure

    A review of process advancement of novel metal spinning

    Get PDF
    Metal spinning technology has seen a rapid development in recent years. Novel spinning processes, such as non-axisymmetrical spinning, non-circular cross-section spinning and tooth-shaped spinning, are being developed. This has challenged the limitation of traditional spinning technology being used for manufacturing axisymmetrical, circular cross-section, and uniform wall-thickness parts. In this paper, the classification of the traditional spinning processes is proposed based on the material deformation characteristics, the relative position between roller and blank, mandrel spinning and mandrel-free spinning, and temperature of the blank during spinning. The advancement of recently developed novel spinning processes and corresponding tool design and equipment development are reviewed. The classification of the novel spinning processes is proposed based on the relative position between the rotating axes, the geometry of cross-section and the variation of wall-thickness of the spun parts. The material deformation mechanism, processing failures and spun part defects of the aforementioned three groups of novel spinning processes are discussed by analyzing four representative spinning processes of industrial applications. Furthermore, other novel spinning processes and their classification as reported in the literature are summarized

    Intrinsic instability of coronal streamers

    Get PDF
    Plasma blobs are observed to be weak density enhancements as radially stretched structures emerging from the cusps of quiescent coronal streamers. In this paper, it is suggested that the formation of blobs is a consequence of an intrinsic instability of coronal streamers occurring at a very localized region around the cusp. The evolutionary process of the instability, as revealed in our calculations, can be described as follows: (1) through the localized cusp region where the field is too weak to sustain the confinement, plasmas expand and stretch the closed field lines radially outward as a result of the freezing-in effect of plasma-magnetic field coupling; the expansion brings a strong velocity gradient into the slow wind regime providing the free energy necessary for the onset of a subsequent magnetohydrodynamic instability; (2) the instability manifests itself mainly as mixed streaming sausage-kink modes, the former results in pinches of elongated magnetic loops to provoke reconnections at one or many locations to form blobs. Then, the streamer system returns to the configuration with a lower cusp point, subject to another cycle of streamer instability. Although the instability is intrinsic, it does not lead to the loss of the closed magnetic flux, neither does it affect the overall feature of a streamer. The main properties of the modeled blobs, including their size, velocity profiles, density contrasts, and even their daily occurrence rate, are in line with available observations.Comment: 7 pages, 3 figure

    Effectiveness of a community-based multifaceted fall-prevention intervention in active and independent older Chinese adults

    Get PDF
    This paper is freely available online under the BMJ Journals unlocked scheme, se

    A study of manufacturing tubes with nano/ultrafine grain structure by stagger spinning

    Get PDF
    A new method of manufacturing tubes with nano/ultrafine grain structure by stagger spinning and recrystallization annealing is proposed in this study. Two methods of the stagger spinning process are developed, the corresponding macroforming quality, microstructural evolution and mechanical properties of the spun tubes made of ASTM 1020 steel are analysed. The results reveal that a good surface smoothness and an improved spin-formability of spun parts can be obtained by the process combining of 3-pass spinning followed by a 580 °C × 0.5 h static recrystallization and 2-pass spinning with a 580 °C × 1 h static recrystallization annealing under the severe thinning ratio of wall thickness reduction. The ferritic grains with an average initial size of 50 μm are refined to 500 nm after stagger spinning under the 87% thinning ratio of wall thickness reduction. The equiaxial ferritic grains with an average size of 600 nm are generated through re-nucleation and grain growth by subsequent recrystallization annealing at 580 °C for 1 h heat preservation. The tensile strength of spun tubes has been founded to be proportional to the reciprocal of layer spacing of pearlite (LSP), and the elongation is inversely proportional to the reciprocal of LSP. This study shows that the developed method of stagger power spinning has the potential to be used to manufacture bulk metal components with nano/ultrafine grain structure

    Improved Hydrogen Release from Ammonia Borane Confined in Microporous Carbon with Narrow Pore Size Distribution

    Get PDF
    This is the author accepted manuscript. The final version is available from Royal Society of Chemistry via the DOI in this record.Ammonia borane is a promising hydrogen storage candidate due to its high hydrogen capacity and good stability at room temperature, but there are still some barriers to be overcome before it can be used for practical applications. We present the hydrogen release from ammonia borane confined in templated microporous carbon with extremely narrow pore size distribution. Compared with neat ammonia borane, hydrogen release temperature of ammonia borane confined in microporous carbon with pore size of 1.05 nm is significantly reduced, starting at 50 C and with peak dehydrogenation temperature centred at 86 C. The dehydrogenation kinetics of ammonia borane confined in templated microporous carbon is significantly improved and by-products including ammonia and diborane are also completely prohibited without any catalysts involved. The remarkable fast hydrogen release rate and high hydrogen storage capacity from ammonia borane confined in microporous carbon is due to the dramatic decrease in the activation energy of ammonia borane. This is so far the best performance among porous carbon materials used as the confinement scaffolds for ammonia borane in hydrogen storage, making AB confined in microporous carbon a very promising candidate for hydrogen storage.The financial support by the Royal Society and University of Exeter is greatly acknowledged
    • …
    corecore