36 research outputs found

    Embedded Multi-label Feature Selection via Orthogonal Regression

    Full text link
    In the last decade, embedded multi-label feature selection methods, incorporating the search for feature subsets into model optimization, have attracted considerable attention in accurately evaluating the importance of features in multi-label classification tasks. Nevertheless, the state-of-the-art embedded multi-label feature selection algorithms based on least square regression usually cannot preserve sufficient discriminative information in multi-label data. To tackle the aforementioned challenge, a novel embedded multi-label feature selection method, termed global redundancy and relevance optimization in orthogonal regression (GRROOR), is proposed to facilitate the multi-label feature selection. The method employs orthogonal regression with feature weighting to retain sufficient statistical and structural information related to local label correlations of the multi-label data in the feature learning process. Additionally, both global feature redundancy and global label relevancy information have been considered in the orthogonal regression model, which could contribute to the search for discriminative and non-redundant feature subsets in the multi-label data. The cost function of GRROOR is an unbalanced orthogonal Procrustes problem on the Stiefel manifold. A simple yet effective scheme is utilized to obtain an optimal solution. Extensive experimental results on ten multi-label data sets demonstrate the effectiveness of GRROOR

    Molecular Cloning and Expression Analysis of the Endogenous Cellulase Gene MaCel1 in Monochamus alternatus

    Get PDF
    The purpose of this study was to characterize the endogenous cellulase gene MaCel1 of Monochamus alternatus, which is an important vector of Bursaphelenchus xylophilus, a pine wood nematode, which causes pine wilt disease (PWD). In this study, MaCel1 was cloned by rapid amplification of cDNA end (RACE), and its expression analyzed by RT-qPCR (real-time quantitative PCR detecting). A total of 1778 bp of cDNA was obtained. The encoding region of this gene was 1509 bp in length, encoding a protein containing 502 amino acids with a molecular weight of 58.66 kDa, and the isoelectric point of 5.46. Sequence similarity analysis showed that the amino acids sequence of MaCel1 had high similarity with the beta-Glucosinolate of Anoplophora glabripennis and slightly lower similarity with other insect cellulase genes (GH1). The beta-D-Glucosidase activity of MaCel1 was 256.02 +/- 43.14 U/L with no beta-Glucosinolate activity. MaCel1 gene was widely expressed in the intestine of M. alternatus. The expression level of MaCel1 gene in male (3.46) and female (3.51) adults was significantly higher than that in other developmental stages, and the lowest was in pupal stage (0.15). The results will help reveal the digestive mechanism of M. alternatus and lay the foundation for controlling PWD by controlling M. alternatus

    Gut Bacterial Communities of Lymantria xylina and Their Associations with Host Development and Diet

    Get PDF
    The gut microbiota of insects has a wide range of effects on host nutrition, physiology, and behavior. The structure of gut microbiota may also be shaped by their environment, causing them to adjust to their hosts; thus, the objective of this study was to examine variations in the morphological traits and gut microbiota of Lymantria xylina in response to natural and artificial diets using high-throughput sequencing. Regarding morphology, the head widths for larvae fed on a sterilized artificial diet were smaller than for larvae fed on a non-sterilized host-plant diet in the early instars. The gut microbiota diversity of L. xylina fed on different diets varied significantly, but did not change during different development periods. This seemed to indicate that vertical inheritance occurred in L. xylina mutualistic symbionts. Acinetobacter and Enterococcus were dominant in/on eggs. In the first instar larvae, Acinetobacter accounted for 33.52% of the sterilized artificial diet treatment, while Enterococcus (67.88%) was the predominant bacteria for the non-sterilized host-plant diet treatment. Gut microbe structures were adapted to both diets through vertical inheritance and self-regulation. This study clarified the impacts of microbial symbiosis on L. xylina and might provide new possibilities for improving the control of these bacteria

    Development of genomic phenotype and immunophenotype of acute respiratory distress syndrome using autophagy and metabolism-related genes.

    Get PDF
    BackgroundDistinguishing ARDS phenotypes is of great importance for its precise treatment. In the study, we attempted to ascertain its phenotypes based on metabolic and autophagy-related genes and infiltrated immune cells.MethodsTranscription datasets of ARDS patients were obtained from Gene expression omnibus (GEO), autophagy and metabolic-related genes were from the Human Autophagy Database and the GeneCards Database, respectively. Autophagy and metabolism-related differentially expressed genes (AMRDEGs) were further identified by machine learning and processed for constructing the nomogram and the risk prediction model. Functional enrichment analyses of differentially expressed genes were performed between high- and low-risk groups. According to the protein-protein interaction network, these hub genes closely linked to increased risk of ARDS were identified with CytoHubba. ssGSEA and CIBERSORT was applied to analyze the infiltration pattern of immune cells in ARDS. Afterwards, immunologically characterized and molecular phenotypes were constructed according to infiltrated immune cells and hub genes.ResultsA total of 26 AMRDEGs were obtained, and CTSB and EEF2 were identified as crucial AMRDEGs. The predictive capability of the risk score, calculated based on the expression levels of CTSB and EEF2, was robust for ARDS in both the discovery cohort (AUC = 1) and the validation cohort (AUC = 0.826). The mean risk score was determined to be 2.231332, and based on this score, patients were classified into high-risk and low-risk groups. 371 differential genes in high- and low-risk groups were analyzed. ITGAM, TYROBP, ITGB2, SPI1, PLEK, FGR, MPO, S100A12, HCK, and MYC were identified as hub genes. A total of 12 infiltrated immune cells were differentially expressed and have correlations with hub genes. According to hub genes and implanted immune cells, ARDS patients were divided into two different molecular phenotypes (Group 1: n = 38; Group 2: n = 19) and two immune phenotypes (Cluster1: n = 22; Cluster2: n = 35), respectively.ConclusionThis study picked up hub genes of ARDS related to autophagy and metabolism and clustered ARDS patients into different molecular phenotypes and immunophenotypes, providing insights into the precision medicine of treating patients with ARDS

    Influence of Starvation on the Structure of Gut-Associated Bacterial Communities in the Chinese White Pine Beetle (Dendroctonus armandi)

    No full text
    This study investigated the influence of starvation on the structure of the gut bacterial community in the Chinese white pine beetle (Dendroctonus armandi). A total of 14 operational taxonomic units (OTUs0.03) clusters belonging to nine genera were identified. Denaturing gradient gel electrophoresis (DGGE) profiles of bacterial PCR-amplified 16S rRNA gene fragments from the guts of starved male and female adults revealed that the bacterial community diversity increased after starvation. The dominant genus Citrobacter decreased significantly, whereas the genus Serratia increased in both starved female and starved male adults. The most predominant bacterial genus in D. armandi adults was Citrobacter, except for starved male adults, in which Serratia was the most abundant genus (27%). Our findings reveal that starvation affects gut bacterial dynamics in D. armandi, as has been observed in other insect species

    Neural versus pneumatic control of pressure support in patients with chronic obstructive pulmonary diseases at different levels of positive end expiratory pressure: a physiological study

    No full text
    Abstract Introduction Intrinsic positive end-expiratory pressure (PEEPi) is a “threshold” load that must be overcome to trigger conventional pneumatically-controlled pressure support (PSP) in chronic obstructive pulmonary disease (COPD). Application of extrinsic PEEP (PEEPe) reduces trigger delays and mechanical inspiratory efforts. Using the diaphragm electrical activity (EAdi), neurally controlled pressure support (PSN) could hypothetically eliminate asynchrony and reduce mechanical inspiratory effort, hence substituting the need for PEEPe. The primary objective of this study was to show that PSN can reduce the need for PEEPe to improve patient-ventilator interaction and to reduce both the “pre-trigger” and “total inspiratory” neural and mechanical efforts in COPD patients with PEEPi. A secondary objective was to evaluate the impact of applying PSN on breathing pattern. Methods Twelve intubated and mechanically ventilated COPD patients with PEEPi ≥ 5 cm H2O underwent comparisons of PSP and PSN at different levels of PEEPe (at 0 %, 40 %, 80 %, and 120 % of static PEEPi, for 12 minutes at each level on average), at matching peak airway pressure. We measured flow, airway pressure, esophageal pressure, and EAdi, and analyzed neural and mechanical efforts for triggering and total inspiration. Patient-ventilator interaction was analyzed with the NeuroSync index. Results Mean airway pressure and PEEPe were comparable for PSP and PSN at same target levels. During PSP, the NeuroSync index was 29 % at zero PEEPe and improved to 21 % at optimal PEEPe (P < 0.05). During PSN, the NeuroSync index was lower (<7 %, P < 0.05) regardless of PEEPe. Both pre-trigger (P < 0.05) and total inspiratory mechanical efforts (P < 0.05) were consistently higher during PSP compared to PSN at same PEEPe. The change in total mechanical efforts between PSP at PEEPe0% and PSN at PEEPe0% was not different from the change between PSP at PEEPe0% and PSP at PEEPe80%. Conclusion PSN abolishes the need for PEEPe in COPD patients, improves patient-ventilator interaction, and reduces the inspiratory mechanical effort to breathe. Trial registration Clinicaltrials.gov NCT02114567 . Registered 04 November 2013

    Neurally Adjusted Ventilatory Assist versus Pressure Support Ventilation in Difficult Weaning: A Randomized Trial

    No full text
    BACKGROUND: Difficult weaning frequently develops in ventilated patients and is associated with poor outcome. In neurally adjusted ventilatory assist, the ventilator is controlled by diaphragm electrical activity, which has been shown to improve patient-ventilator interaction. The objective of this study was to compare neurally adjusted ventilatory assist and pressure support ventilation in patients difficult to wean from mechanical ventilation. METHODS: In this nonblinded randomized clinical trial, difficult-to-wean patients (n = 99) were randomly assigned to neurally adjusted ventilatory assist or pressure support ventilation mode. The primary outcome was the duration of weaning. Secondary outcomes included the proportion of successful weaning, patient-ventilator asynchrony, ventilator-free days, and mortality. Weaning duration was calculated as 28 days for patients under mechanical ventilation at day 28 or deceased before day 28 without successful weaning. RESULTS: Weaning duration in all patients was statistically significant shorter in the neurally adjusted ventilatory assist group (n = 47) compared with the pressure support ventilation group (n = 52; 3.0 [1.2 to 8.0] days vs. 7.4 [2.0 to 28.0], mean difference: -5.5 [95% CI, -9.2 to -1.4], P = 0.039). Post hoc sensitivity analysis also showed that the neurally adjusted ventilatory assist group had shorter weaning duration (hazard ratio, 0.58; 95% CI, 0.34 to 0.98). The proportion of patients with successful weaning from invasive mechanical ventilation was higher in neurally adjusted ventilatory assist (33 of 47 patients, 70%) compared with pressure support ventilation (25 of 52 patients, 48%; respiratory rate for neurally adjusted ventilatory assist: 1.46 [95% CI, 1.04 to 2.05], P = 0.026). The number of ventilator-free days at days 14 and 28 was statistically significantly higher in neurally adjusted ventilatory assist compared with pressure support ventilation. Neurally adjusted ventilatory assist improved patient ventilator interaction. Mortality and length of stay in the intensive care unit and in the hospital were similar among groups. CONCLUSIONS: In patients difficult to wean, neurally adjusted ventilatory assist decreased the duration of weaning and increased ventilator-free days. : WHAT WE ALREADY KNOW ABOUT THIS TOPIC: Neurally adjusted ventilatory assist is safe and well tolerated by patientsIt improves patient-ventilator interaction WHAT THIS ARTICLE TELLS US THAT IS NEW: In selected patients difficult to wean from mechanical ventilation, neurally adjusted ventilatory assist improves patient outcome indicated by reduction in duration of weaningSuch a benefit seems most prominent in tracheostomized patients

    Data_Sheet_1_Early decrease of ventilatory ratio after prone position ventilation may predict successful weaning in patients with acute respiratory distress syndrome: A retrospective cohort study.zip

    No full text
    BackgroundPrevious studies usually identified patients who benefit the most from prone positioning by oxygenation improvement. However, inconsistent results have been reported. Physiologically, pulmonary dead space fraction may be more appropriate in evaluating the prone response. As an easily calculated bedside index, ventilatory ratio (VR) correlates well with pulmonary dead space fraction. Hence, we investigated whether the change in VR after prone positioning is associated with weaning outcomes at day 28 and to identify patients who will benefit the most from prone positioning.Materials and methodsThis retrospective cohort study was performed in a group of mechanically ventilated, non-COVID ARDS patients who received prone positioning in the ICU at Zhongda hospital, Southeast University. The primary outcome was the rate of successful weaning patients at day 28. Arterial blood gas results and corresponding ventilatory parameters on five different time points around the first prone positioning were collected, retrospectively. VR responders were identified by Youden’s index. Competing-risk regression models were used to identify the association between the VR change and liberation from mechanical ventilation at day 28.ResultsOne hundred and three ARDS patients receiving prone positioning were included, of whom 53 (51%) successfully weaned from the ventilator at day 28. VR responders were defined as patients showing a decrease in VR of greater than or equal to 0.037 from the baseline to within 4 h after prone. VR responders have significant longer ventilator-free days, higher successful weaning rates and lower mortality compared with non-responders at day 28. And a significant between-group difference exists in the respiratory mechanics improvement after prone (P ConclusionVentilatory ratio decreased more significantly within 4 h after prone positioning in patients with successful weaning at day 28. VR change was independently associated with liberation from mechanical ventilation at day 28.</p
    corecore